
Has Income Segregation Really Increased? Bias and Bias 
Correction in Sample-Based Segregation Estimates

Several recent studies have concluded that residential segregation by income in the U.S. has 

increased in the decades since 1970, including a significant increase after 2000. Income 

segregation measures, however, are biased upwards when based on sample data. This is a 

potential concern because the sampling rate of the American Community Survey (ACS)—from 

which post-2000 income segregation estimates are constructed—was lower than that of the 

earlier decennial Censuses. This raises the possibility that the apparent increase in income 
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In this paper, we first derive formulas describing the approximate sampling bias in two 

measures of segregation. Next, using Monte Carlo simulations, we show that the 

bias-corrected estimators eliminate virtually all of the bias in segregation estimates in most 

cases of practical interest, although the correction fails to eliminate bias in some cases when 

the population is unevenly distributed among geographic units and the average within-unit 

samples are very small. We then use the bias-corrected estimators to produce unbiased 

estimates of the trends in income segregation over the last four decades in large U.S. 

metropolitan areas. Using these corrected estimates, we replicate the central analyses in four 

prior papers on income segregation. We find that the primary conclusions from these papers 

remain unchanged, although the true increase in income segregation among families after 

2000 was only half as large as that reported in earlier work. Despite this revision, our 

replications confirm that income segregation has increased sharply among families with 

children in recent decades, and that income inequality is a strong and consistent predictor of 
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Has Income Segregation Really Increased? 

Bias and Bias Correction in Sample-Based Segregation Estimates 

 

Abstract  

 Several recent studies have concluded that residential segregation by income in the U.S. has 

increased in the decades since 1970, including a significant increase after 2000. Income segregation 

measures, however, are biased upwards when based on sample data. This is a potential concern because 

the sampling rate of the American Community Survey (ACS)—from which post-2000 income segregation 

estimates are constructed—was lower than that of the earlier decennial Censuses. This raises the 

possibility that the apparent increase in income segregation post-2000 simply reflects increased upward 

bias in the estimates from the ACS, and the estimated increase may therefore be inaccurate.  

In this paper, we first derive formulas describing the approximate sampling bias in two measures 

of segregation. Next, using Monte Carlo simulations, we show that the bias-corrected estimators 

eliminate virtually all of the bias in segregation estimates in most cases of practical interest, although the 

correction fails to eliminate bias in some cases when the population is unevenly distributed among 

geographic units and the average within-unit samples are very small. We then use the bias-corrected 

estimators to produce unbiased estimates of the trends in income segregation over the last four decades 

in large U.S. metropolitan areas. Using these corrected estimates, we replicate the central analyses in 

four prior papers on income segregation. We find that the primary conclusions from these papers remain 

unchanged, although the true increase in income segregation among families after 2000 was only half as 

large as that reported in earlier work. Despite this revision, our replications confirm that income 

segregation has increased sharply among families with children in recent decades, and that income 

inequality is a strong and consistent predictor of income segregation. 
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Has Income Segregation Really Increased? 

Bias and Bias Correction in Sample-Based Segregation Estimates 

 

Introduction 

Several recent studies have documented an increase in residential segregation by income in the 

U.S. over the last four decades (Bischoff and Reardon 2014; Jargowsky 1996; Owens 2016; Reardon and 

Bischoff 2011; Watson 2009). In particular, income segregation in the U.S. appears to have grown sharply 

in the 1980s and since 2000, indicating that American society is becoming more spatially polarized. 

Owens (2016) shows that the increase in income segregation is driven largely by the growing segregation 

of families with children. Given the importance of neighborhood socioeconomic conditions for young 

children’s development and opportunities for economic mobility (Brooks-Gunn, Duncan and Aber 1997; 

Chetty and Hendren 2015; Chetty, Hendren and Katz 2015), the increasing economic segregation of 

children is of particular concern. 

There is reason, however, to doubt the reported increase in economic segregation. The estimates 

of income segregation reported in the aforementioned papers are based on household or family income 

data reported on the “long form” of the U.S. decennial Census from 1970 to 2000 and on the American 

Community Survey (ACS) from 2005 onward. Only a sample of the U.S. population was asked to fill out 

the long form of the decennial Census from 1970 to 2000 (approximately one in six households); and an 

even smaller sample is asked to fill out the ACS in any 5-year window (approximately one in 12 

households). As we describe below, segregation estimates based on random samples are generally biased 

upwards relative to the values that would be measured if the full population were observed. Moreover, 

the upward bias is inversely related to the sampling rate. This means that estimates of income 

segregation based on the Census and the ACS data are biased upwards, and the upward bias is larger for 

estimates based on the ACS than for estimates based on the Census. As a result, we would expect to see 
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an increase in estimated segregation between 2000 and later years, a period in which samples rates 

declined from approximately 17 to 8 percent, even if there were no true change in levels of income 

segregation. Without a method of accounting for (or eliminating) the bias in segregation estimates, we 

cannot make valid comparisons between estimates based on different sampling rates or sample sizes. 

We are not the first to raise this concern. Most recently, Logan et al (forthcoming) question the 

reported increase in income segregation after 2000. They rightly note that the difference in sampling 

rates between the Census long form and the ACS bias estimates of the post-2000 trend in income 

segregation upwards. Napierala and Denton (2017) note that sampling variation leads to imprecision in 

segregation estimates and upward bias when samples are small. Several earlier papers also noted upward 

bias in segregation measures as a result of stochastic processes (Winship 1977) and small sample sizes 

(Reardon and Bischoff 2011). Some of these papers propose strategies for constructing unbiased sample-

based estimates of segregation (Logan et al. forthcoming; Reardon and Bischoff 2011). The Reardon and 

Bischoff (2011) approach fails to remedy the problem, however (see Logan et al. forthcoming), while the 

methods proposed by Logan et al. (forthcoming) have not been validated across a wide range of data-

generating conditions and require, in some cases, access to restricted micro-data. Our goals in this paper, 

therefore, are to develop and validate a method of eliminating the bias in sample-based segregation 

measures that does not rely on access to micro-data, and then to use this method to produce unbiased 

estimates of segregation patterns and trends over the last few decades.  

We first derive formulas describing the approximate sampling bias in two measures of 

segregation. Our formulas allow us to quantify the bias in both binary measures of segregation between 

two mutually exclusive groups and in measures of rank-order segregation, such as the measures widely 

used to study income segregation. These formulas describe the approximate bias in segregation 

estimates as a function of the average unit (e.g., census tract) population and the harmonic mean of the 

sampling rate across units. If both unit population sizes and sampling rates are known, we show that they 
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can be used to construct bias-corrected segregation estimates without relying on access to sample micro-

data. Using Monte Carlo simulations, we test these bias-corrected estimators across a wide range of 

realistic residential patterns and characterize the range of conditions under which they provide 

approximately unbiased estimates of segregation. We show that the bias-corrected estimators eliminate 

virtually all of the bias in segregation estimates in most cases of practical interest, although the correction 

fails to eliminate bias in some cases when the population is unevenly distributed among geographic units 

and the average within-unit samples are very small.   

Second, we use the bias-corrected estimators to produce unbiased estimates of the trends in 

income segregation over the last four decades in large U.S. metropolitan areas. Using these corrected 

estimates, we replicate the central analyses in four prior papers on income segregation (Bischoff and 

Reardon 2014; Owens 2016; Reardon and Bischoff 2016; Reardon and Bischoff 2011) to examine whether 

the trends and patterns reported in those papers were an artifact of the biased estimators they relied on. 

We find that the primary results in these papers hold up, though the true increase in income segregation 

among families after 2000 was only half as large as that reported by Bischoff and Reardon (2014).  

  

Sampling in the Decennial Census and American Community Survey 

The Census is a decennial, housing unit-based survey that collects limited information on the full 

U.S. population, including housing tenure status and an enumeration of the age, sex, and race/ethnicity of 

each household member. These data are available for all geographic levels down to the census “block,” 

the basic Census sampling unit that encompasses approximately one city block (though blocks may be 

larger in suburban and rural areas). All other sociodemographic information tabulated by the Census 

(including, in particular here, the household and family income data used to estimate income 

segregation) is collected from a sample of Americans from what was formerly called the Census “long 

form,” also collected every ten years. These data are generally publicly available and tabulated in slightly 
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larger geographic units, such as “block groups” (an aggregation of several contiguous blocks) and tracts 

(an aggregation of several contiguous block groups). Tracts typically contain several thousand residents 

and have often been used in sociological research to approximate residential neighborhoods. 

In Censuses up to and including 2000, the long-form data were collected from samples of 

approximately one in six households, or about 17 percent of the U.S. population. This amounted to 

approximately 18 million households contacted, and 16.4 million usable questionnaires (National 

Research Council 2007). Using unweighted sample counts and population estimates available from the 

Census Bureau, we estimate that on average in the 1970 through 2000 Censuses, 250-300 households 

were sampled in each tract and the household sampling rate ranged from 17 to 20 percent. 

The ACS replaced the Census long form after 2000 with the promise of providing more frequent 

(annual) estimates of sociodemographic characteristics of the U.S. population. The cost of these annual 

estimates is a reduction in annual sample size. In addition, because segregation estimates rely on data for 

small geographies, it is necessary to use aggregate ACS data across 5-year windows to accumulate what 

the Census deems to be sufficient sample sizes in smaller geographies like tracts. In 2005, the first year 

that the ACS was fully implemented, the Census Bureau aimed to achieve a sampling rate of 

approximately 12 percent over a five-year period by sampling about three million unique addresses per 

year.1 The ACS sample, however, is then reduced substantially by subsampling for in-person interviews.2 

In reality, the ACS sampled approximately 14.5 million housing units in the 2005-09 period, and 

conducted 9.7 million final interviews to be included in the usable data (approximately 7.5 percent of 

total housing unit addresses). The Census Bureau increased the sample size after 2011, resulting in an 

original sample of approximately 16.8 million housing units in the 2010-14 period, and a final sample of 

                                                      
1 This plan aimed to survey 15 million housing units over 5 years out of the approximately 130 million housing unit 
addresses in the United States in 2005 (National Research Council 2007). 
2 The Census follow-up rate for non-response and unmailable addresses varies by the tract characteristics (Bureau of 
the Census n.d.).  
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nearly 11 million usable questionnaires. However, the Census Bureau samples housing units from small 

geographies, and target sampling rates vary by tract characteristics (Bureau of the Census 2014). Using 

available unweighted sample counts and population estimates, we estimate that in the ACS 5-year 

aggregate data from 2005-09 to 2012-16, the average tract sample size is 130-160 households and the 

average tract sampling rate ranged from 8 to 10 percent.  

Clearly there has been a decline in the sample sizes and rates since the inception of the ACS, 

especially in small geographies. Knowing that small sample sizes would be problematic for researchers, in 

particular those interested in neighborhood analyses, the Census Bureau began publishing confidence 

intervals in ACS data tables to highlight the imprecision in the estimates. The Census Bureau was less 

transparent about sampling error in census long form data, though these small-geography data also 

suffered from substantial imprecision (to a lesser extent than data in the ACS) (National Research Council 

2007: 65-74). 

 

Prior research on sampling bias and corrections in income segregation estimates 

Segregation measures are generally based on a decomposition of the population variation in 

income (or race or any other characteristic) into between- and within-neighborhood components 

(Reardon 2011; Reardon and Firebaugh 2002). Commonly-used measures differ in how they quantify 

variation: Jargowsky’s Neighborhood Sorting Index (NSI) uses the variance of income (Jargowsky 1996); 

the rank-order information theory index (𝐻𝐻𝑅𝑅) uses a measure of the entropy of income ranks; and the 

rank-order variance ratio index (𝑅𝑅𝑅𝑅) uses the variance of income ranks (Reardon 2011; Reardon and 

Bischoff 2011), to name a few. The bias in sample-based segregation measures arises because the 

observed variation in a finite sample is generally a downwardly-biased estimator of the variation in the 

full population, and the magnitude of the downward bias is inversely related to sample size. This means 

that sample-based segregation estimators underestimate the true extent of within-neighborhood 
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variation much more than they underestimate population variation (because the population variation is 

estimated from a much larger sample than each neighborhood’s). As a result, sample-based segregation 

estimates assign too much of the variation to the between-unit component of the decomposition: that is 

to say, they overestimate segregation.3 

Several recent papers propose methods for correcting the sampling bias in income segregation 

estimates. Reardon and Bischoff (2011) noted that comparisons of segregation estimates across 

populations (across metropolitan areas, years, or racial/ethnic groups) are biased if the average within-

tract sample sizes differ among populations. To address this, they randomly sampled 10,000 families from 

the Census-reported population in each metropolitan area-year-race/ethnic group cell, reasoning that by 

equalizing sample sizes they would equalize the amount of bias in each estimate. Several more recent 

papers use a modified version of this method, sampling a number of families equal to 50 times the 

number of census tracts in a metropolitan area, reasoning that it was preferable to hold the average 

sample size per tract constant rather than the total sample size (Bischoff and Reardon 2014; Owens 2016; 

Reardon and Bischoff 2016).4 

Reardon and Bischoff (2011) argued that, while this approach would not yield unbiased estimates 

in any given population, the expected bias would be equal in each estimate, allowing for unbiased 

estimation of changes over time and differences between race/ethnic groups. Subsequent analyses of 

this method, however, indicate that subsampling from populations based on Census or ACS estimates 

does not yield comparable bias across populations (Logan et al. forthcoming).5 The segregation trends 

                                                      
3 To see this in a simple (extreme) case, suppose each neighborhood in a city were 50% poor and 50% rich, and we 
estimated income segregation by drawing a random sample of one person from each neighborhood. There would 
be no within-neighborhood variation in our sample, but considerable variation in the population as a whole, so we 
would (very wrongly) conclude that the city was completely segregated by income.  
4 Logan et al (forthcoming) describe the approach used in these papers; the sampling procedure used is not well-
documented in the published papers. 
5 We have replicated this Logan et al (forthcoming) finding in our own analyses (not shown). The Reardon and 
Bischoff (2011) approach does not eliminate differential bias in segregation estimates. The resampling is done from 
the estimated tract income distributions, not the actual income distributions. The income variation in these 
estimated distributions is more downwardly-biased in the ACS (because it is based on smaller samples) than in the 
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and patterns reported in the Reardon and Bischoff papers and the Owens paper are therefore potentially 

confounded by differential bias across time, place, and/or race/ethnic group.  

Logan et al (forthcoming) propose several approaches for constructing unbiased sample-based 

estimates of segregation. First, they suggest an approach—which they term sparse-sampling variance 

decomposition (SSVD)—that uses Census or ACS micro-data and a finite sample correction to obtain an 

unbiased estimate of the average within-tract variance. This method is useful when one is using a 

variance-based segregation measure such as Jargowsky’s (1996) Neighborhood Sorting Index (NSI) or 

Reardon’s (2011) rank-order variance ratio index (𝑅𝑅𝑅𝑅) and one has access to micro-data within a 

restricted-access Census Research Data Center (RDC). Second, they derive formulas describing the 

approximate bias in 𝐻𝐻𝑅𝑅, the rank-order information theory index, and in 𝐻𝐻10 and 𝐻𝐻90, the information 

theory index measures of segregation of poverty and affluence (Reardon and Bischoff 2011). They 

propose estimating 𝐻𝐻𝑅𝑅, 𝐻𝐻10, and 𝐻𝐻90 from micro-data and then subtracting the corresponding bias 

terms from these estimates. They show that both the SSVD approach and the bias-formula correction 

method yield approximately—but not perfectly—unbiased segregation estimates in the set of six cities 

they study using micro-data from the 1940 Census. 

These methods rely on micro-data. When only aggregated data are available (as is the case with 

publicly available census data), Logan et al (forthcoming) suggest a multi-step approach: a) using the 

grouped data to estimate within-unit income distributions; b) generating repeated samples from these 

estimated distributions; and then c) applying the micro-data based bias-correction approaches to each of 

these simulated micro-data samples; and d) averaging the resulting estimates. Using simulations based on 

individual household Census data from Chicago in 1940, they show that this approach to estimating 

segregation from grouped data yields estimates that are generally less biased than the uncorrected 

                                                      
decennial Census. This differential bias is then carried into the (equally-sized) samples drawn in the resampling 
process. 
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estimates when the sampling rate is low (though the adjusted estimator of the NSI appears generally 

worse than the unadjusted estimator, at least for Chicago). The adjusted grouped-data estimators for 𝐻𝐻𝑅𝑅, 

𝐻𝐻10, 𝐻𝐻90, and 𝑅𝑅𝑅𝑅 appear to over-correct in some cases and under-correct in others, though are (at least 

for Chicago) less biased than the unadjusted estimators (Logan et al. forthcoming). The approaches they 

recommend for correcting estimates of segregation based on grouped data have not been validated 

across a range of data-generating scenarios, however. The approximations on which they are based may 

break down when samples are small or when sampling rates and/or sample sizes vary among units. 

In this paper, we extend this literature in several ways. First, we derive formulas describing the 

approximate sampling bias in both binary and rank-order measures of segregation, focusing on the 

information theory index 𝐻𝐻 and the variance ratio index 𝑅𝑅 because these two measures have the most 

desirable mathematical properties in an index (James and Taeuber 1985; Reardon 2011; Reardon and 

Firebaugh 2002). Second, we use these formulas to derive bias-corrected segregation estimators that can 

be used with grouped data and do not require access to sample (or simulated) micro-data. Third, we use 

simulations to investigate the performance of the bias-corrected estimators over a wide range of data-

generating models; we base these data-generating models on the spatial income distribution patterns 

found in U.S. metropolitan areas. And fourth, we use the bias-corrected estimators to produce corrected 

estimates of recent trends and patterns of income segregation in the U.S.  

 

A review of binary and rank-order segregation measures 

 We focus in this paper on two binary measures of segregation, the information theory index, 

denoted 𝐻𝐻, and the variance ratio index, denoted 𝑅𝑅. These indices satisfy a set of important properties, 

including organizational equivalence, size invariance, organizational decomposability, and the principles 

of transfers and exchanges (James and Taeuber 1985; Reardon and Firebaugh 2002). The dissimilarity and 
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Gini indices do not satisfy all of these principles and so are less broadly useful.6 In addition, both 𝐻𝐻 and 𝑅𝑅 

can be used to construct measures of rank-order segregation, denoted 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 (Reardon 2011), which 

can be used to measure segregation along some ordered dimension such as income (Reardon and 

Bischoff 2011). The formulas and properties of these indices are described in detail elsewhere; we briefly 

review their formulas below. 

To begin, we define some notation. We first are interested in computing (binary) segregation 

between two groups among a set of 𝐽𝐽 units (e.g., census tracts). Let 𝑝𝑝 denote the group proportion in a 

given unit. For values of 𝑝𝑝 ∈ [0,1], define the Interaction index (𝐼𝐼) and Entropy (𝐸𝐸): 

𝐼𝐼 = 𝑝𝑝(1 − 𝑝𝑝) 

𝐸𝐸 = −[𝑝𝑝 ln 𝑝𝑝 + (1 − 𝑝𝑝) ln(1 − 𝑝𝑝)], 

(1) 

where we define 0 ∙ ln 0 = 0. Note that both 𝐼𝐼 and 𝐸𝐸 are concave down functions of 𝑝𝑝, a feature that 

leads estimates of both to be biased when 𝑝𝑝 is estimated from a sample (see Appendix section A1). The 

binary variance ratio and information theory segregation indices are respectively defined as 

𝑅𝑅 = 1 −
1
𝐼𝐼
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 

(2) 

and 

𝐻𝐻 = 1 −
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸𝑗𝑗

𝐽𝐽

𝑗𝑗=1

, 

(3) 

where 𝐼𝐼 and 𝐸𝐸 are the values of 𝐼𝐼 and 𝐸𝐸 in the whole population; where 𝐼𝐼𝑗𝑗 and 𝐸𝐸𝑗𝑗  are the values of 𝐼𝐼 and 

                                                      
6 Moreover, while it is straightforward to show that sample-based estimates of other measures of segregation, such 
as the dissimilarity index and the Gini index, will also be biased upwards (see Appendix section A9), we do not have a 
tractable expression for the magnitude of the bias for these indices, because of the presence of the absolute value 
function in their formulas. For these reasons, we focus on the 𝐻𝐻 and 𝑅𝑅 indices in this paper. See Napierala and 
Denton (2017) for some discussion of sampling bias in the dissimilarity index. 
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𝐸𝐸 in unit 𝑗𝑗; and where 𝑡𝑡𝑗𝑗/𝑇𝑇 is the share of the population in unit 𝑗𝑗. 

If 𝑦𝑦 is an ordered variable such as income, the corresponding rank-order income segregation 

indices are 

𝐻𝐻𝑅𝑅 =
1

∫ 𝐸𝐸(𝑞𝑞)𝑑𝑑𝑞𝑞 1
0

 � 𝐸𝐸(𝑞𝑞)𝐻𝐻(𝑞𝑞)𝑑𝑑𝑞𝑞 
1

0
= 2� 𝐸𝐸(𝑞𝑞)𝐻𝐻(𝑞𝑞)𝑑𝑑𝑞𝑞 

1

0
 

𝑅𝑅𝑅𝑅 =
1

∫ 𝐼𝐼(𝑞𝑞)𝑑𝑑𝑞𝑞 1
0

� 𝐼𝐼(𝑞𝑞)𝑅𝑅(𝑞𝑞)𝑑𝑑𝑞𝑞 
1

0
= 6� 𝐼𝐼(𝑞𝑞)𝑅𝑅(𝑞𝑞)𝑑𝑑𝑞𝑞 

1

0
, 

(4) 

where 𝐼𝐼(𝑞𝑞), 𝑅𝑅(𝑞𝑞), 𝐸𝐸(𝑞𝑞), and 𝐻𝐻(𝑞𝑞) are the values of 𝐼𝐼, 𝑅𝑅, 𝐸𝐸, and 𝐻𝐻 when the population is divided into 

groups defined by whether 𝑦𝑦 is above or below the 100 × 𝑞𝑞𝑡𝑡ℎ percentile of 𝑦𝑦. For example 𝐻𝐻(.5) is the 

value of 𝐻𝐻 computed between those with above and below median values of 𝑦𝑦. The rank-order measures 

are weighted integrals of the binary indices over values of 𝑞𝑞 ∈ (0,1). In practice, when 𝑦𝑦 is available only 

in coarsened form (such as when income data are coarsened into 16 income categories in U.S. census or 

ACS data), we estimate 𝐻𝐻(𝑞𝑞) or 𝑅𝑅(𝑞𝑞) by first computing 𝐻𝐻 or 𝑅𝑅 at the set of finite values of 𝑞𝑞 that 

correspond to the percentiles of the thresholds used to coarsen the data; we then fit a polynomial 

function through the resulting points; and then using the fitted polynomial as an estimate of 𝐻𝐻(𝑞𝑞) or 

𝑅𝑅(𝑞𝑞) in Equation (4) above (see Reardon 2011; Reardon and Bischoff 2011). 

 

Bias in sample-based segregation estimates 

The formulas above assume we observe 𝑝𝑝𝑗𝑗  and 𝑡𝑡𝑗𝑗 without error in each unit 𝑗𝑗. Instead, here we 

assume we know 𝑡𝑡 with certainty but must estimate 𝑝𝑝 from a sample. As we show in Appendix A, the 

assumption that 𝑡𝑡 is known with certainty is not essential. More specifically, from each unit 𝑗𝑗 ∈ {1, … , 𝐽𝐽} 

we observe a simple random sample of size 𝑛𝑛𝑗𝑗, drawn without replacement from the population in the 

unit, which is of known finite size 𝑡𝑡𝑗𝑗. Because 𝑝𝑝𝑗𝑗  is estimated from a sample, 𝐼𝐼𝑗𝑗 and 𝐸𝐸�𝑗𝑗  will be biased 
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downward (because, as we note above, 𝐼𝐼 and 𝐸𝐸 are concave down functions of 𝑝𝑝 on the interval (0,1)). 

The formulas for 𝑅𝑅 and 𝐻𝐻 in Equations (2) and (3) indicate that downward bias in 𝐼𝐼𝑗𝑗 and 𝐸𝐸�𝑗𝑗  will lead 𝑅𝑅� and 

𝐻𝐻� to be biased upwards. This is the source of upward bias in sample-based estimates of segregation.7 

In Appendix A, we show that the approximate biases in both 𝑅𝑅� and 𝐻𝐻� are functions of a bias term, 

𝐵𝐵 (defined below), which depends on the arithmetic and harmonic means of the unit populations and the 

harmonic mean of the sampling rates. The specific formulas are below. 

Let 𝑡𝑡𝑗𝑗 denote the population in unit 𝑗𝑗, and let 𝑡𝑡̅ − 1 and 𝑡𝑡 − 1�  denote the arithmetic and 

harmonic means of 𝑡𝑡𝑗𝑗 − 1, respectively. Finally, let 𝐶𝐶 denote the covariance of 𝑡𝑡𝑗𝑗 and 𝐼𝐼𝑗𝑗: 

𝐶𝐶 =
1
𝐽𝐽
��𝑡𝑡𝑗𝑗 − 𝑡𝑡̅��𝐼𝐼𝑗𝑗 − 𝐼𝐼�̅
𝑗𝑗

. 

(5) 

We show in Appendix A that the sampling biases in 𝑅𝑅� and 𝐻𝐻� are then approximately 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑅𝑅�� ≈ 𝐵𝐵(1 − 𝑅𝑅)− 𝐵𝐵 �
𝐶𝐶

(𝑡𝑡̅ − 1)𝐼𝐼
� 

(6) 

and 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝐻𝐻�� ≈
𝐵𝐵

2𝐸𝐸
. 

(7) 

In both cases, the bias is proportional to 𝐵𝐵, defined as  

𝐵𝐵 =
𝑧𝑧

𝑡𝑡̅ − 1
∙

1 − �̃�𝑟
�̃�𝑟

, 
(8) 

where �̃�𝑟 is the harmonic mean of the unit sampling rates, and where 𝑧𝑧 is a function of the ratio of the 

arithmetic and harmonic means of 𝑡𝑡𝑗𝑗 − 1: 

                                                      
7 Strictly speaking, 𝐼𝐼 and 𝐸𝐸 must also be estimated in Equations (2) and (3), and these estimates will be biased 
downward. But because 𝐼𝐼 and 𝐸𝐸 are estimated from the pooled sample over all units, rather than separately within 
each unit, the sampling bias in 𝐼𝐼 and 𝐸𝐸�  is small compared to the bias in the 𝐼𝐼𝑗𝑗’s and 𝐸𝐸�𝑗𝑗’s. As a result, 𝑅𝑅�  and 𝐻𝐻� will be 
biased upwards in general. 
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𝑧𝑧 = 1 +
1
𝑡𝑡̅ �
𝑡𝑡̅ − 1
𝑡𝑡 − 1� − 1�. 

(9) 

Note that 𝑧𝑧 has a minimum of 1, obtained if 𝑡𝑡𝑗𝑗 = 𝑡𝑡̅ is constant across units, and grows larger with more 

variation in the 𝑡𝑡𝑗𝑗’s. Moreover 𝑧𝑧 ≈ 1 unless 𝑡𝑡̅ is small and the 𝑡𝑡𝑗𝑗’s are highly variable. 

Equation (8) shows that the bias term grows large when 𝑡𝑡̅ is small, when �̃�𝑟 is small, and when 𝑧𝑧 is 

large. To get a sense of the absolute magnitude of 𝐵𝐵, note that if 𝑟𝑟𝑗𝑗 = 𝑟𝑟 is constant, then 

𝐵𝐵 =
𝑧𝑧(1 − 𝑟𝑟)
𝑛𝑛� − 𝑟𝑟

≈
1 − 𝑟𝑟
𝑛𝑛�

, 
(10) 

where 𝑛𝑛� = 1
𝐽𝐽
∑𝑛𝑛𝑗𝑗 is the average sample size across units. So in the case where census tracts have an 

average of 1,000 families, and the sampling rate is 0.08 (a typical case with ACS data), 𝐵𝐵 ≈ .92
80

= 0.0115. 

Note also how the bias factor changes as the sampling rate changes: changing the sampling rate by a 

factor of 𝑐𝑐 changes 𝐵𝐵 by a factor of 1−𝑐𝑐�̃�𝑟
𝑐𝑐−𝑐𝑐�̃�𝑟

. So, for example, halving the sampling rate from 0.16 to 0.08 

increases 𝐵𝐵 by a factor of 2.19. Halving it again from 0.08 to 0.04 increases 𝐵𝐵 by a factor of 2.09. 

The bias in 𝑅𝑅� described in Equation (6) has two components, each proportional to 𝐵𝐵. The first 

component is positive and proportional to 1 − 𝑅𝑅, so that 𝑅𝑅� is biased toward 1 by a proportion 𝐵𝐵. The 

second component of the bias in Equation (6) may be positive or negative, depending on the sign of 𝐶𝐶, 

the covariance between unit populations (𝑡𝑡𝑗𝑗’s) and unit diversities (𝐼𝐼𝑗𝑗’s); it is proportional to 𝐶𝐶 and 

inversely proportional to 𝑡𝑡̅ − 1 and 𝐼𝐼. This bias term will be small relative to the first bias term unless 𝑡𝑡̅ is 

small and 𝐼𝐼 is small (which occurs if the proportion of individuals in one of the two binary categories is 

near 0 or 1) and 𝐶𝐶 is large. Note that if 𝐶𝐶 = 0 (which will occur by definition if either 𝑡𝑡𝑗𝑗 = 𝑡𝑡̅ or 𝐼𝐼𝑗𝑗 = 𝐼𝐼 is 

constant across units), then 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑅𝑅�� ≈ 𝐵𝐵(1 − 𝑅𝑅). 
(11) 

 In practice, we will assume that the second component of the bias in 𝑅𝑅� is 0, since in most cases it 
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will be very small relative to the first term. As we show below, this assumption is reasonable in many, but 

not all, cases we examine. 

The bias in 𝐻𝐻� described in Equation (7) has a single component. The bias is positive, and 

proportional to 𝐵𝐵 and inversely proportional to 𝐸𝐸. This bias term will be large when 𝐸𝐸 is small (which 

occurs if the proportion of individuals in one of the two binary categories is near 0 or 1). In Appendix A, 

we note that the approximation in Equation (7) fails substantially when 𝑡𝑡̅ is small and/or 𝐸𝐸 is near 0.  

 The bias in the rank-order measures 𝑅𝑅�𝑅𝑅 and 𝐻𝐻�𝑅𝑅 follow directly from the bias in the binary 

measures from which they are computed. We show in Appendix A that the biases are approximately 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑅𝑅�𝑅𝑅� ≈ 𝐵𝐵(1 − 𝑅𝑅𝑅𝑅) −
6𝐵𝐵

(𝑡𝑡̅ − 1)� 𝐶𝐶(𝑞𝑞)𝑑𝑑𝑞𝑞
1

0
 

≈ 𝐵𝐵(1 − 𝑅𝑅𝑅𝑅) 

(12) 

and 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝐻𝐻�𝑅𝑅� ≈ 𝐵𝐵. 
(13) 

Note that Equations (12) and (13) provide straightforward expressions of the bias in the rank-order 

segregation measures. These expressions depend on the arithmetic and harmonic means of the unit sizes 

(which are generally readily observable) and the harmonic mean of the sampling rate (also available from 

published Census data). In the case of the rank-order variance ratio index, the bias also depends on the 

true level of segregation. Note also that Equation (13) is a more general and more precise version of the 

bias formula derived in Logan et al. (forthcoming).8 

 The bias described in Equations (12) and (13) above results from the fact that income data are 

based on samples. One might additionally worry that the coarsening of income data may lead to 

                                                      
8 Logan et al (forthcoming) use a formula that assumes both sampling with replacement (which is not the case with 
Census data) and a low sampling rate. Our formula in Equation (13) assumes sampling without replacement and 
accommodates heterogeneity in sampling rates (and unit sizes). 
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additional bias in rank-order segregation estimates (because even among sampled households, income is 

not known exactly). Because 𝐸𝐸(𝑞𝑞) and 𝐼𝐼(𝑞𝑞) in Equation (4) are known by definition, there will be error in 

𝐻𝐻�𝑅𝑅 or 𝑅𝑅�𝑅𝑅 only to the extent that the estimated functions 𝐻𝐻�(𝑞𝑞) and 𝑅𝑅�(𝑞𝑞) are error-prone. Intuitively, the 

error in the functions 𝐻𝐻�(𝑞𝑞) and 𝑅𝑅�(𝑞𝑞) will depend on the number and location of the data points used to 

estimate them; these are determined by the number and location of the thresholds used to coarsen the 

income data. When there are fewer income categories, and when these income categories are not 

relatively evenly spaced across the income distribution, the uncertainty in 𝐻𝐻�(𝑞𝑞) and 𝑅𝑅�(𝑞𝑞) will be greater, 

leading to more uncertainty in the rank-order income segregation estimates. Although this coarsening 

may lead to imprecision in income segregation estimates, there is no reason to expect it to lead to 

systematic bias in rank-order segregation measures or error patterns that differ systematically over time 

or are related to sampling rates. Having fewer or differently located income thresholds would not be 

expected to systematically shift the fitted functions 𝐻𝐻�(𝑞𝑞) and 𝑅𝑅�(𝑞𝑞) upwards or downwards. Moreover, 

Reardon (2011) shows that choosing different numbers or locations of the income thresholds does not 

yield systematic differences in estimated segregation levels. Because there is no theoretical reason to 

expect systematic bias related to the coarsening of income data, we focus here on the bias that results 

from sampling.  

 

Bias-corrected segregation measures 

 Given the bias approximation formulas above, we can construct bias-corrected estimates of 

segregation. Let 𝑅𝑅� and 𝐻𝐻� denote the sample-based estimates of segregation. We show in Appendix A that 

we can construct bias-corrected estimates 𝑅𝑅�∗ and 𝐻𝐻�∗ as follows: 

𝑅𝑅�∗ =
𝑅𝑅� − 𝐵𝐵
1 − 𝐵𝐵

 

𝐻𝐻�∗ = 𝐻𝐻� −
𝐵𝐵

2𝐸𝐸
. 
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(14) 

From these we can estimate polynomial functions 𝑅𝑅�∗(𝑞𝑞) and 𝐻𝐻�∗(𝑞𝑞) (following Reardon 2011; Reardon 

and Bischoff 2011, we use fourth-order polynomials; Reardon 2011  shows that income segregation 

estimates are insensitive to the choice of higher-order polynomials) and use the fitted values to construct 

bias-corrected measures of rank-order segregation using the formulas in Equation (4):9 

𝑅𝑅�𝑅𝑅∗ = 6� 𝐼𝐼(𝑞𝑞)𝑅𝑅�∗(𝑞𝑞)𝑑𝑑𝑞𝑞 
1

0
 

𝐻𝐻�𝑅𝑅∗ = 2� 𝐸𝐸(𝑞𝑞)𝐻𝐻�∗(𝑞𝑞)𝑑𝑑𝑞𝑞
1

0
. 

(15) 

Equation (15) provides a much more straightforward bias-correction to the rank-order indices than 

proposed by Logan et al (forthcoming): it requires no access to micro-data, no estimation of unit-specific 

income distributions from grouped data, and no simulated sampling from the estimated distribution. 

Likewise, because the bias-corrected version of the rank-order information theory index here uses a bias 

formula that applies under a wider range of conditions than that used by Logan et al (forthcoming) (see 

footnote 8 above), Equation (15) may also provide more accurate bias correction over a range of data 

generating scenarios than the Logan et al (forthcoming) approach. 

 

                                                      
9 The corrections in Equation (15) rely on first correcting the binary measures and then constructing a rank-order 
measure from these estimates. An alternate approach would be to use the uncorrected binary segregation 
measures to construct a (biased) rank-order segregation estimate, and then to correct the rank-order measure, 
using the following formulas: 

𝑅𝑅�𝑅𝑅∗ =
𝑅𝑅�𝑅𝑅 − 𝐵𝐵
1 − 𝐵𝐵

 

𝐻𝐻�𝑅𝑅∗ = 𝐻𝐻�𝑅𝑅 − 𝐵𝐵. 
These formulas will yield identical estimates of 𝑅𝑅�𝑅𝑅∗ as Equation (15), but will typically yield very slightly different 
estimates of 𝐻𝐻�𝑅𝑅∗. We prefer the approach described by Equation (15) both because it yields rank-order estimates 
that are consistent with the binary estimates used to construct them, and because in simulations we conducted (not 
shown), Equation (15) generally produced very slightly better results (in terms of bias elimination) than this 
alternate approach. 
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Assessing the accuracy of the bias-corrected segregation measures 

 Equations (14) and (15) will yield unbiased estimates of segregation if the approximations used in 

deriving Equations (6) and (7) are accurate. To assess the validity of these approximations and the 

resulting formulas, we conduct a series of simulation analyses. In order to ensure that our simulations 

capture the range of data-generating conditions that arise in practical applications, we use observed 

tabulations from the 2005-2009 ACS in generating simulated data. Specifically, we do the following.10  

First, we select all census tracts in a given metropolitan area (we use the 2003 Office of 

Management and Budget metropolitan area and division definitions). For each census tract, the ACS 

provides a tabulation of the estimated family income distribution, with income reported in 16 discrete 

ordered categories. This tabulation takes the form of a vector ��̂�𝑡1𝑗𝑗, �̂�𝑡2𝑗𝑗, … , �̂�𝑡16𝑗𝑗�, where �̂�𝑡𝑘𝑘𝑗𝑗 is the 

estimated number of families in income category 𝑘𝑘 in tract 𝑗𝑗 and where 𝑡𝑡𝑗𝑗 = ∑ �̂�𝑡𝑘𝑘𝑗𝑗𝑘𝑘  is the total number of 

families in tract 𝑗𝑗. We also obtain the reported unweighted sample size 𝑛𝑛𝑗𝑗 in tract 𝑗𝑗, and compute the 

tract-specific sampling rate 𝑟𝑟𝑗𝑗 = 𝑛𝑛𝑗𝑗/𝑡𝑡𝑗𝑗.11  

Second, we construct a simulated population data file with 𝑇𝑇 = ∑ 𝑡𝑡𝑗𝑗𝑗𝑗  observations, where each 

observation represents a single family in tract 𝑗𝑗 with income in category 𝑘𝑘, and where the grouped 

income distribution in each tract is defined by the ACS-reported tabulations. We treat this population as 

the `true’ population of the metropolitan area; from it we compute the `true’ binary and rank-order 

                                                      
10 The data and code used in these simulations are available at https://cepa.stanford.edu/wp18-02.  
11 Tract-level unweighted sample sizes of persons and housing units are publicly available from the Census Bureau 
for each decennial census and ACS 5-year aggregate estimate. We downloaded them via Social Explorer. We 
estimate tract-level sampling rates as the ratio of the unweighted count of housing units to the population estimate 
of housing units reported by the Census Bureau. The population estimates are subject to margins of error, so the 
sampling rates we compute are subject to a small amount of error. This will tend to lead to very slight 
underestimates of the harmonic mean of sampling rates (�̃�𝑟), which may in turn lead to very slight overcorrections of 
sampling bias in segregation estimates. However, any such overcorrection will generally be extremely small. Note 
that If tract-level sampling rates were not available, the overall sampling rate in the larger geographic unit of 
interest, here the metropolitan area, could be substituted; as long as the sampling rates do not vary substantially 
among tracts, the overall sampling rate will be a reasonable approximation of the harmonic mean of tract sampling 
rates.  

https://cepa.stanford.edu/wp18-02
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segregation indices in this population. 

Third, for a given sampling rate 𝑟𝑟, we draw without replacement samples of sizes 𝑟𝑟 ∙ 𝑡𝑡𝑗𝑗 from each 

tract 𝑗𝑗. From this sample, we estimate the unadjusted binary and rank-order segregation measures and 

their bias-corrected analogs. We repeat this step 100 times, producing distributions of uncorrected and 

corrected segregation estimates. 

Finally, we repeat this process for each of the 380 metropolitan areas (excluding Puerto Rico) and 

for sampling rates ranging from 𝑟𝑟 = 0.02 to 𝑟𝑟 = 0.20. For each metropolitan area and sampling rate (and 

for both 𝐻𝐻 and 𝑅𝑅), we compute the average of the uncorrected estimates; the difference between this 

average estimate and the ‘true’ segregation level is the bias of the uncorrected estimate. We do the same 

with the bias-corrected estimates in order to assess the bias in the corrected estimator. For each 

metropolitan area and sampling rate, we compute the bias in these estimators of binary segregation at 

each of 15 income thresholds, and for both the corrected and uncorrected versions of each of the two 

rank-order indices.  

 

Simulation results 

 We first examine the uncorrected and corrected binary segregation measures 𝑅𝑅� and 𝐻𝐻� as a 

function of the proportion of families in the metropolitan area below the income threshold used to define 

the binary measure. Figure 1 presents the bias in the uncorrected and corrected binary segregation 

measures at each income threshold in each metropolitan area when the sampling rate is 𝑟𝑟 =  0.08. This 

results in 380 ∙ 15 = 5,700 estimates of bias, spanning a wide range of income thresholds and levels of 

segregation. 

[Figure 1 here] 

 Figure 1 shows that, at an 8 percent sampling rate, the bias in the binary 𝐻𝐻� is roughly +0.007 

when the income threshold is in the middle of the income distribution, but as much as three times larger 
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when it is in the tails of the income distribution. The bias in the binary 𝑅𝑅� is roughly +0.01 at income 

thresholds across the full income distribution. The bias correction performs well in most cases for both 

measures of segregation, though it clearly overcorrects binary 𝐻𝐻� at low and high income percentiles.  

For the binary 𝑅𝑅� measure, there is a slight but discernible negative slope in both the uncorrected 

and corrected bias. In supplemental analyses, we find that this is driven by the fact that 𝐶𝐶 (equation 5) is 

generally not zero (see Appendix B). Rather, within most metropolitan areas, tract size is often slightly 

positively correlated with median income. As a result, 𝐶𝐶 is generally positive for high income thresholds 

and negative for low income thresholds. Because we assume 𝐶𝐶 = 0, the bias-corrected estimator tends 

to slightly overcorrect the binary 𝑅𝑅� at high income percentiles and undercorrect at low percentiles. In 

Appendix B, figures B1 and B2 show that when we artificially constrain all tracts in a metropolitan area to 

have the same population size in our simulations (thereby setting 𝐶𝐶 = 0 by construction), the bias-

corrected estimator performs equally well at all income thresholds. Nonetheless, the bias correction is 

generally very good; remaining bias in the corrected measures is generally a very small fraction of original 

bias of the uncorrected measures. 

 Figure 2 presents smoothed estimates of the bias in binary uncorrected and corrected 𝑅𝑅� and 𝐻𝐻�; 

the dashed lines for the uncorrected and corrected estimates at 𝑟𝑟 = 0.08 are constructed by fitting a 

smoothed line through the points in Figure 1. The lines associated with 𝑟𝑟 = 0.04 (solid) and 𝑟𝑟 = 0.16 

(dotted) are estimated in a similar fashion. For the uncorrected measures, the average bias at any income 

percentile decreases as the sampling rate increases. The bias corrections, however, appear to perform 

equally well across a range of sampling rates, except for the bias-corrected 𝐻𝐻�∗ measure at income 

percentiles near the extremes of the income distribution.  

[Figure 2 here] 

 We next examine the bias in the rank-order income segregation measures. Figure 3 describes the 

bias in the uncorrected and corrected rank-order 𝐻𝐻�𝑅𝑅 and 𝑅𝑅�𝑅𝑅 as a function of sampling rate, where 𝑟𝑟 
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varies from two percent up to 20 percent. Bias in the uncorrected measures is clearly decreasing as 

sampling rate increases, and is roughly twice as large at eight percent as at 16 percent for both 𝐻𝐻�𝑅𝑅 and 

𝑅𝑅�𝑅𝑅, suggesting that comparisons of Census- and ACS-based rank-order income segregation estimates will 

be biased. The bars on the figure represent the range in which the bias of 95 percent of metropolitan 

areas fall. For the uncorrected measures of rank-order income segregation, the bias varies considerably 

among metropolitan areas, particularly as the sampling rate gets small. This is partly because the bias 

term 𝐵𝐵 depends on the average tract population, which varies across metropolitan areas. In the case of 

𝑅𝑅�𝑅𝑅, the variation also emerges because the bias depends on the true value of 𝑅𝑅𝑅𝑅 (see Equation 12), 

which varies across metropolitan areas.  

[Figure 3 here] 

The bias in the corrected measures, averaged across all metropolitan areas, is nearly zero at all 

sampling rates. Moreover, the bias is not only zero on average, but it is nearly zero in every metropolitan 

area, as seen by the very narrow 95 percent range bars (some of which are too narrow to be visible in the 

figure). At the very lowest sampling rate (two percent), the bias in the bias-corrected rank-order 𝑅𝑅�𝑅𝑅 is 

slightly negative, but still vastly smaller than the bias in the uncorrected estimator. The figure makes clear 

that the corrected estimators perform very well when used to estimate income segregation among the 

full population across the range of conditions present in U.S. metropolitan areas.  

 The derivations of the bias-correction formulas rely on several approximations that are valid 

when tract populations are relatively large and do not vary much across tracts. These conditions are met 

when considering the income segregation of all families, but may be less true for sub-populations. 

Consider income segregation among black families, for example. In many metropolitan areas, the average 

number of black families per tract is much smaller (one-tenth or even smaller) than the total number of 

families. Moreover, because of residential segregation, the number of black families per tract varies 

widely across tracts. Both of these conditions might lead to a failure of the simplifying assumptions used 
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to derive the bias and bias-correction formulas. 

To assess the performance of the bias-corrected measures under such conditions, we compute 

uncorrected and bias-corrected measures of income segregation among black families from the 

simulations above.12 Figure 4 presents the bias in rank-order income segregation among black families by 

the average number of black families per tract in a metropolitan area. This figure shows two things. First, 

the bias in estimates of income segregation among black families is very large, particularly in 

metropolitan areas with few black families. Second, the bias-corrected estimators tend to overcorrect the 

estimates, producing segregation estimates that are often much too low; this overcorrection is 

particularly pronounced when the average number of families in a tract is low. For metropolitan areas 

where the number of black families in the average tract is greater than 200, the bias-corrected estimates 

are generally less biased (in terms of absolute value of the bias) than the uncorrected estimates, though 

they are still somewhat negatively biased. Appendix Table B1 quantifies the average extent of 

overcorrection in 𝐻𝐻�𝑅𝑅∗ and 𝑅𝑅�𝑅𝑅∗ at different sampling rates and average tract sizes. At an average tract size 

of 200, 𝑅𝑅�𝑅𝑅∗ overcorrects by roughly 30 percent on average, regardless of sampling rate; 𝐻𝐻�𝑅𝑅∗ overcorrects 

by even more, particularly at low sampling rates. Below average tract sizes of 200, the bias-corrected 

estimators do not perform well. This is particularly true for 𝐻𝐻�𝑅𝑅, where the cure is worse than the disease 

when average tract sizes are small. 

[Figure 4 here] 

 It is important to note that the failure of the bias-correction formulas in Figure 4 results from the 

confluence of three conditions: the tract population sizes are a) very small on average, b) highly variable, 

and c) correlated with tract median income. Without all three of these conditions present, the bias-

                                                      
12 We do the same for white and Hispanic families, but we focus here on the simulation results for black families, 
because they represent the strictest test of the formulas. Failures of the bias-correction formulas are most likely to 
appear in the black family income segregation estimates, as the black population is both smaller and more 
segregated than the Hispanic or white population in most metropolitan areas. 
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correction formulas perform well across a wide range of conditions.  

 

Bias-corrected estimates of trends in income segregation 

In this section, we report and compare bias-corrected and uncorrected estimates of income 

segregation among different populations over the past several decades. We then compare bias-corrected 

estimates of income segregation to previously published estimates and replicate multivariate regression 

analyses from several key papers, using the corrected estimates of income segregation. Estimates rely on 

publicly available counts of families or households in 8 to 25 income categories, depending on the year 

and population, from the decennial Census or ACS. 

We begin by estimating rank-order income segregation among four census-defined populations 

that have been the focus of recent published research—families, households, families with children under 

the age of 18, and households without children (Bischoff and Reardon 2014; Owens 2016; Reardon and 

Bischoff 2011, 2016).13 Comparisons among estimates for these populations highlight important 

distinctions among the social contexts and patterns of inequality for children and adults. We present 

trends in average levels of income segregation within a set of large metropolitan areas used in previous 

work, those with populations over 500,000 as of 2007 (N=116).14 We pay particular attention to trends 

between the 2000 decennial Census and the ACS years because of the change in the sampling rate 

between these surveys that resulted in reduced tract-level sample sizes.   

[Table 1 here] 

Table 1 presents uncorrected and bias-corrected estimates of both rank-order 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 using 

decennial Census data since 1970 and ACS data for two non-overlapping 5-year spans, 2005-09 (labeled 

                                                      
13 Households are categorized by the Census as either family or non-family households. Family households consist of 
people related by marriage or parenthood; non-family households include single people living alone and non-related 
people living together. Data on income by the presence of children is not publicly available prior to 1990. 
14 Cape Coral is excluded from these estimates due to missing data in 1970. 
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as 2007, the middle year) and 2012-16 (labeled 2014). Results for families (top panel) show that 

uncorrected estimates are inflated in all years, with larger differences between uncorrected and bias-

corrected estimates in the post-2000 ACS years. From 1970 to 2000, estimates of the average 

uncorrected 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 are 4 to 6 percent higher than the corresponding bias-corrected estimates; in 

2007 and 2014, the uncorrected estimates are 8 to 10 percent higher than the bias-corrected estimates. 

Figure 5 presents trends in uncorrected (dashed line) and bias-corrected (solid line) estimates of 𝐻𝐻𝑅𝑅 from 

1970 to 2014, clearly showing that the uncorrected estimates are more upwardly biased after 2000, 

when the tract-level sampling rate declined, than in earlier years. Nonetheless, the corrected estimates 

show that average metropolitan area income segregation increased by roughly 4% between 2000 and 

2014 (p<0.001; see Table 1). 

[Figure 5 here] 

The lower three panels of Table 1 present the average bias-corrected rank-order income 

segregation estimates among all households, families with children, and households without children. 

Similar to the findings for families, bias-corrected estimates for these populations are lower than 

uncorrected estimates in all years, with greater differences after 2000. Bias is smaller for all households 

(2 to 4 percent in Census years and 6 to 7 percent in ACS years) than families with children or households 

without children (5 to 8 percent in Census years and 11 to 15 percent in ACS years) because the total 

household population is larger than the subpopulations by the presence of children. 

[Figure 6 here] 

Figure 6 provides a summary of trends in rank-order income segregation among all four 

populations, presenting the mean bias-corrected estimates of 𝐻𝐻𝑅𝑅 found in Table 1. Two key patterns are 

evident here. First, income segregation is substantially higher among families with children than among 

households without children. It is slightly higher among family households than among all households 

after 1980, because a larger share of families have children than do households and segregation is highest 
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among families with children. Second, there has been no substantial change in income segregation 

among all households since 1990, though this masks divergent trends among families with children and 

childless households. Income segregation has risen by 20 percent since 1990 among families with 

children, with most of the increase occurring between 2000 and 2014 (p<0.001). Among households 

without children, income segregation declined by 10 percent in the 1990s and has been stable since then. 

The higher segregation levels and divergent trends mean that income segregation among families with 

children is now more than twice as high as among households without children.15 Table 1 shows that 

these patterns are the same if segregation is measured using the rank-order variation ratio index, 𝑅𝑅𝑅𝑅. 

In addition to describing average levels of income segregation, binary 𝐻𝐻 and 𝑅𝑅 can be estimated 

at any percentile in the income distribution by fitting a polynomial through the binary estimates at each 

income threshold defined by census or ACS categories and interpolating to every percentile in the income 

distribution (for details about this method, see Reardon and Bischoff 2011). Figure 7 and Appendix Table 

C1 present trends in family income segregation at the 90th (H90 and R90), 50th (H50 and R50), and 10th 

(H10 and R90) percentiles of the income distribution from 1970 to 2014. Figure 7 presents bias-corrected 

estimates of H10 (dotted line), H50 (solid line), and H90 (dashed line). Uncorrected and bias-corrected 

estimates for H and R are presented in Appendix Table C1. The difference between uncorrected and bias-

corrected estimates are again larger after 2000. 

[Figure 7 here] 

Figure 7 shows that segregation of affluent families (H90) declined in the 1970s, rose in the 

1980s, and declined modestly in the 1990s. Since 2000, H90 has increased modestly and then declined 

again. The difference from 2000 to 2014 is not statistically significant. Segregation between families in the 

top and bottom halves of the income distribution (H50) has increased since 1980, with levels significantly 

                                                      
15 As described above, our bias-correction method performs best when the average tract population in a 
metropolitan area is at least 200. The average tract population of both families with children and households 
without children is greater than 200 in all metropolitan areas in our analysis sample. 
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higher in 2014 than in 2000. Segregation of poor families from others (H10) rose in the 1970s and 1980s, 

declined in the 1990s and has been stable since 2000; the difference between the 2014 and 2000 

estimates is not statistically significant. Overall, income segregation has increased only very modestly 

since 2000 at the top and bottom of the income distribution, with a slightly larger increase between the 

top and bottom halves of the income distribution. Notably, segregation of affluent families is much higher 

than segregation of poor families in all years: in 2014, segregation of affluent families was approximately 

30 percent higher than segregation of poor families. 

Examining trends in income segregation among different racial/ethnic groups is important for 

understanding the changing relationship between race/ethnicity, socioeconomic status, and residential 

attainment. Estimates for specific racial/ethnic groups may be particularly prone to bias because the size 

of these populations is small relative to the total population and, due to racial segregation, unevenly 

distributed across tracts in many areas of the U.S.  As previously noted, our bias-correction method 

performs best when the average tract population in a metropolitan area is at least 200 families of a 

particular group (though even then, our method tends to modestly over-correct the bias). Therefore, we 

estimate rank-order income segregation among white, black, and Hispanic families in only the 

metropolitan areas in our sample that meet this criterion (116 metropolitan areas for white families, 22 

for black families, and 20 for Hispanic families).16 We discuss 𝑅𝑅𝑅𝑅 for the race-specific results because 𝑅𝑅𝑅𝑅 

provides better bias adjustments than 𝐻𝐻𝑅𝑅 for small populations, as shown in Figure 4 above, though 

trends in 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 (presented in Appendix Table C2) are consistent with one another. 

The estimated trends in average within-race segregation are shown in Appendix Table C2 and 

Appendix Figure C1. In 2000, income segregation levels were similar among white and black families 

                                                      
16 For comparison with prior research (Bischoff and Reardon 2014), we focus on estimates that include all white and 
black families without regard to Hispanic ethnicity. Trends for non-Hispanic white families, also presented in 
Appendix C, are similar to those for white families, though levels of segregation are 6 to 14% lower among non-
Hispanic white families. Income data on non-Hispanic black families are not publicly available.   
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(0.107 and 0.105, respectively) and slightly lower among Hispanic families (0.095). Income segregation 

among all three groups has risen since 2000, but segregation rose much more among black and Hispanic 

families (by approximately 25 percent) than it did among white families (approximately 4 percent). 

Compared to the 2000 distribution of segregation levels (which had standard deviations of roughly 0.025 

for white and black income segregation, and 0.015 for Hispanic segregation; see Appendix Table C2), the 

increases in black and Hispanic average income segregation were very large—about one standard 

deviation—while the increase in white income segregation was less than one quarter of a standard 

deviation. These results are consistent with Logan et al (forthcoming), whose bias-adjusted estimates 

show that income segregation among black families grew substantially, and faster than income 

segregation among the population as a whole. Given that the bias-correction will tend to overcorrect the 

black and Hispanic segregation estimates (and will do so more when the sampling rate is lower), the 

estimated 25% increase in segregation among black and Hispanic families likely underestimates the true 

trend modestly. The trends for different racial/ethnic groups are not strictly comparable, however, 

because they reflect a different set of metropolitan areas. In Appendix Table C2, we report estimated 

average income segregation among white families in the sets of 22 and 20 metropolitan areas for which 

we estimate black and Hispanic family income segregation, respectively. These analyses yield the same 

conclusion: average income segregation among black and Hispanic families increased more than among 

white families from 2000 to 2014.  

 

Replications of previously published research on income segregation 

Do our bias-corrected estimates alter the conclusions reached in previously published research 

on the trends and correlates of income segregation? Table 2 presents published estimates of rank-order 

income segregation (𝐻𝐻𝑅𝑅) among families (Bischoff and Reardon 2014; Reardon and Bischoff 2016), 

households, families with children, and households without children (Owens 2016). Recall that the 
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authors of these papers adjusted the simple income segregation estimates in an attempt to address small 

sample bias concerns. Their adjustment methods generally inflated the estimates but did not eliminate 

the bias. Estimates of 𝑅𝑅𝑅𝑅 have not been previously published. 

[Table 2 here] 

Bischoff and Reardon (2014) concluded that income segregation among families declined 

modestly in the 1970s, rose sharply in the 1980s, was stable in the 1990s, and increased after 2000. As 

presented in the top panel, bias-corrected estimates of 𝐻𝐻𝑅𝑅 for the same years and metropolitan area 

sample support these conclusions. Of particular interest are the trends from 2000 onward, when 

sampling rates declined. The bias-corrected estimates indicate that rank-order income segregation 

increased by about four percent from 2000 to 2012, compared to an eight percent increase reported by 

Reardon and Bischoff (2016). Therefore, about half of the previously-reported increase after 2000 was 

due to bias induced by the changing sampling rate between the Census and ACS. The bias-corrected 

estimates indicate that from 1970 to 2012, income segregation among families increased by about 25 

percent, slightly less than the previously reported estimates.  

Bischoff and Reardon (2014) also report estimates of income segregation by race. We do not 

compare our results to these previously published estimates because our sample restriction (to 

metropolitan areas where there are an average of 200 or more black or Hispanic families per tract) differs 

from that used in earlier work and because previous work did not publish estimates of 𝑅𝑅𝑅𝑅, which we 

prefer for the race-specific results. Our bias-corrected estimates in Appendix Table C2 indicate that 

income segregation among white families in 2000 was more similar to that of black and Hispanic families 

than Bischoff and Reardon (2014) reported. Our findings are, however, consistent with Bischoff and 

Reardon’s conclusion that income segregation increased more quickly among black and Hispanic families 

than among white families.  

The lower panels of Table 2 compare published and bias-corrected estimates of rank-order 



 
 

28 

income segregation among all households and by the presence of children. Owens (2016) showed that 

income segregation did not increase substantially among all households but did increase among families 

with children from 1990 to 2010. The bias-corrected estimates for the same years and metropolitan areas 

support this conclusion—𝐻𝐻𝑅𝑅 changed negligibly from 1990 to 2010 among all households and actually 

declined by about nine percent among households without children. The previously-reported increase in 

income segregation, 𝐻𝐻𝑅𝑅, among families with children from 2000 to 2010 was 17 percent; the bias-

corrected increase is about 14 percent. Therefore, our bias-corrected income segregation estimates 

generally confirm the trends reported in past research, though the magnitude of changes since 2000 is 

slightly smaller than previously reported.   

Past research has also documented a relationship between income segregation and income 

inequality, demonstrating that rising income inequality is associated with increasing residential sorting by 

income (Reardon and Bischoff 2011; Watson 2009). We replicate multivariate results from several 

published papers using bias-corrected 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅and find no substantial change in the results.   

[Table 3] 

Table 3 presents the key coefficients from models estimating the relationship between income 

inequality and rank-order income segregation (replications of the full tables are presented in Appendix C, 

tables 3-5). Each paper measures income inequality using the Gini coefficient. The top panel of Table 3 

replicates Reardon and Bischoff (2011), predicting income segregation among large metropolitan areas 

from 1970 to 2000; the second panel replicates Bischoff and Reardon (2014), which extends the model to 

2009. Models include metropolitan area and year fixed effects and metropolitan area-year covariates. As 

shown in column 1, the published results indicated that a one-point increase on the Gini index 

corresponded to approximately a one-half-point increase in family income segregation between 

neighborhoods. Columns 2 and 3 present results from the same model using bias-corrected 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅; 

the coefficients in these models are similar in magnitude and statistical significance to the corresponding 



 
 

29 

previously published estimates. The magnitude of the differences between published and corrected 

coefficients ranges from -1 percent to +14 percent.  

The bottom panel of Table 3 presents results from Owens (2016), who focused on differences 

between income segregation among households with and without children. Replications of regression 

analyses from this paper using bias-corrected 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 produce very similar results to those published. 

The coefficient for income inequality is positive and of similar magnitude to published results, indicating 

that changes in income inequality from 1990 to 2010 were positively associated with changes in income 

segregation among childless households. The positive and significant interaction term between income 

inequality and families with children across all estimates indicates that the relationship between income 

inequality and income segregation was more than twice as large among families with children as among 

childless households. Owens (2016) also investigated whether school district fragmentation (the degree 

to which a metropolitan area was split up between many school districts) contributed to higher 

residential segregation among families with children. The results predicting bias-corrected 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 are 

consistent with the published results: income segregation among families with children is higher in 

metropolitan areas that are more fragmented (the coefficient for fragmentation x families with children is 

significant and positive).  

In summary, our replications of previously published regression models using bias-corrected 

measures of income segregation do not alter any of the substantive conclusions of prior research. The 

relationships between income segregation and both income inequality and school district fragmentation 

remain positive, large, and statistically significant when the bias-correction methods for income 

segregation are used.  

 

Discussion 

 Our investigations of potential bias in recent income segregation trends demonstrate several 
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important facts. First, we confirm that sample-based segregation measures are biased upwards. The bias 

is often moderately large relative to the magnitude of observed differences and changes in segregation. 

Ignoring the bias may therefore lead to erroneous inferences. Second, we show that it is possible to 

compute bias-corrected segregation measures that largely eliminate the small sample bias using publicly 

available Census and ACS tabulations; the correction does not require access to restricted census micro-

data nor does it require repeated simulation of micro-data. Third, bias-corrected estimates indicate that 

roughly half of the increase in family income segregation between 2000 and later ACS years reported in 

recent research is due to increased upward bias resulting from the lower sampling rate of the ACS relative 

to the 2000 Census. Nonetheless, the bias-corrected trend indicates that income segregation did rise 

after 2000, albeit more slowly than has been reported. The increase in family income segregation is 

largely due to trends among families with children, which we find did increase substantially after 2000, 

consistent with Owens’ (2016) findings. We also find that income segregation among black and Hispanic 

families increased much more than it did among white families. Furthermore, replications of multivariate 

analyses from previously published papers confirm that rising income inequality is a primary predictor of 

increases in residential sorting by income.  

The bias in segregation measures that we investigate here is not limited to the study of income 

segregation. All standard segregation indices (binary, multigroup, ordinal, and rank-order measures) are 

biased upwards when computed from sample data. Sample-based measures of gender segregation within 

firms, for example, will be biased upwards—and will be more biased in firms or divisions in which the 

organizational units are smaller. Likewise, sample-based measures of racial/ethnic segregation among 

organizations (such as churches, schools, clubs, or firms) will be subject to upward bias. Moreover, the 

bias we describe is not limited to the two segregation measures we focus on here; similar bias is present 

in the dissimilarity and Gini indices of segregation, though we do not derive formulas for their biases 

here. Segregation measures are not subject to the form of bias we describe here, however, when 
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computed from full population data. Racial segregation measures computed from the decennial Census, 

for example, are based on race counts from the full population enumeration, and so are not subject to 

the sample-induced bias we describe here. Likewise, racial/ethnic school segregation measures computed 

from population-based racial/ethnic enrollment counts—such as in the Common Core of Data (CCD)—are 

not subject to sampling bias. 

We show that the sampling bias is inversely related to the average unit size and the sampling 

rate. This has implications not just for the measurement of income segregation trends, but for any 

comparison involving either different sampling rates or units of different average size. For example, a 

comparison of income segregation in different countries will be biased if the countries use a different 

sampling rate or if the geographic units (the equivalents of census tracts in each country) differ in size. A 

comparison of between-tract to between-block group segregation will be biased because the average 

tract population is roughly three times larger than the average block group population. It follows from 

this that any sample-based decomposition of segregation into within- and between-unit components will 

overstate the within-unit component. And a comparison of segregation in two different subpopulations—

such as income segregation among individuals over age 65 and among those younger than 65, for 

example—will be biased if the subpopulations have different average within-tract sizes. 

The biases in 𝑅𝑅� and 𝑅𝑅�𝑅𝑅 are also inversely related to the true level of segregation. This means, for 

example, that if we wish to compare the change in segregation between two metropolitan areas, one 

highly segregated and one much less segregated, the estimated change will be biased upwards more in 

the less segregated metropolitan area than the more segregated one. And finally, the bias in binary 𝐻𝐻� is 

inversely related to the entropy 𝐸𝐸. So an estimate of the segregation between the bottom 10 percent of 

earners and all others will be more upwardly biased than an estimate of the segregation between the 

bottom and the top half of the income distribution. 

The bias-corrected estimators we describe here provide a method of obtaining approximately 
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unbiased estimates in many cases of practical interest. Researchers may use these bias-corrected 

estimators to make valid comparisons in the types of cases listed above. In the substantive cases of 

interest in this paper, the methods we describe here allow comparisons of income segregation across 

years with different sampling rates, metropolitan areas with different overall levels of segregation, and 

subpopulations of different size. These methods do not require access to micro data. Instead, one need 

only know the total unit populations and the harmonic mean of the unit sampling rates, which can be 

estimated with publicly available data. With these, it is straightforward to implement the bias-corrected 

estimators we describe. We have written a set of Stata commands, “seg” and “rankseg,” which perform 

the bias correction. These are publicly available via the Boston College Statistical Software Components 

(SSC) archive.  

As we show, however, there are some cases where the bias-corrected estimators fail to provide 

accurate estimates. When sample sizes are small on average and highly variable, the estimators may fail 

to provide unbiased estimates. We advise caution in such cases; Figure 4 and the derivations in Appendix 

A may provide researchers with some guidance regarding the potential magnitude of the bias and extent 

to which our estimators eliminate this bias.  

Note also that the methods and estimates we describe here provide bias correction due to bias 

that arises in the case of sampling without replacement in each geographic unit, where the sampling rate 

in each tract is known. The approach can accommodate variation in sampling rates across units. Simple 

adjustments to the formulas can accommodate cases where sampling is done with replacement. But our 

methods do not address several other factors that complicate the estimation of income segregation. Our 

method does not explicitly address cases where sampling probabilities vary within a unit (as is implicitly 

the case when sampling weights are used to account for various forms of non-response) or where missing 

income data are imputed, reducing the effective sample size. In such a case, however, if the effective 

sampling rate in each unit is known, it can be used in place of the simple sampling rate in the bias-
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correction formulas. Our discussion here also does not address bias that arises from data suppression. For 

example, Logan et al (forthcoming) report that the black household income distribution is not reported in 

public ACS tabulations for 17,000 census tracts that together contain 1.2 million black individuals. Missing 

income data for black families in these tracts may bias estimates of income segregation among black 

families, though it is likely that the bias is small given that these households make up only 3% of the total 

US black population.  

Finally, our concern in this paper is the bias in sample-based estimates of segregation. We have 

not addressed the issue of sampling variability in segregation estimates. Because the substantive focus of 

this paper is on average trends in segregation among many metropolitan areas, the error in each 

individual metropolitan area’s estimated income segregation that arises from sampling variability is a 

secondary concern. In our estimates of average trends, uncertainty due to sampling variability is captured 

in the standard errors of the regression models. But in other contexts, one might want to know whether 

income segregation changed in one particular place. In that case, it is essential to quantify the sampling 

variance in segregation estimates. We know of no published research that provides formulas describing 

the sampling variability of segregation measures, however (though Reardon (2011) does provide formulas 

for the error that arises due to model (polynomial order) uncertainty). In part, this is because most 

methodological research on segregation indices has focused on racial segregation, where full population 

data have been widely available, obviating concerns about sampling variability. Sample-based segregation 

estimates, however, may have substantial sampling variance. Future work should therefore aim to 

construct standard errors for sample-based segregation estimators.  

We conclude with some practical guidelines for estimating segregation. First, if the data are 

based on samples rather than full populations, segregation estimates will be subject to bias. In general, 

lower sampling rates and smaller unit populations will yield larger bias. Second, the formulas above 

(particularly Equations 7, 11, 12, and 13) allow one to estimate the degree of bias. If the expected bias is 
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large enough to impact the inferences of interest, the bias-correction methods we propose will be useful. 

Third, if unit-specific sampling rates are not available, we recommend using instead the overall or average 

sampling rate in the larger population; unless sampling rates are highly variable, this will yield bias-

corrected estimates that are very close to what would be obtained using unit-specific sampling rate 

information. Fourth, when estimating binary segregation measures, if the group proportions are near 0 or 

1, we recommend using 𝑅𝑅 instead of 𝐻𝐻 (see Figure 1), given the poor performance of the bias-correction 

of H in such cases. Fifth, when estimating rank-order segregation measures, the bias correction work well 

for both 𝑅𝑅𝑅𝑅 and 𝐻𝐻𝑅𝑅 under most conditions. Finally, we advise caution when estimating (binary or rank-

order) segregation in cases when the unit populations are small on average (our rule of thumb here is 

200), highly variable, and correlated with the interaction or entropy indices, as is the case when 

estimating within-race income segregation under conditions of substantial racial and economic 

segregation. With the exception of these conditions, the bias-correction methods appear to satisfactorily 

address the concern about bias in sample-based segregation estimates.  
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Table 1. Mean Uncorrected and Bias-Corrected Estimates of Rank-Order Income Segregation, 116 
Largest Metropolitan Areas, by Household Type and Year 

  

Year

1970 0.097 0.093 0.110 0.106
(0.027) (0.027) (0.031) (0.031)

1980 0.094 * 0.088 *** 0.106 * 0.101 **
(0.027) (0.027) (0.030) (0.030)

1990 0.116 *** 0.111 *** 0.129 *** 0.124 ***
(0.029) (0.029) (0.032) (0.032)

2000 0.116 0.111 0.130 0.126
(0.027) (0.026) (0.030) (0.030)

2007 0.125 *** 0.114 * 0.138 *** 0.128
(0.028) (0.027) (0.031) (0.031)

2014 0.126 *** 0.115 ** 0.140 *** 0.130 *
(0.027) (0.027) (0.030) (0.030)

1970 0.100 0.097 0.114 0.112
(0.024) (0.024) (0.027) (0.271)

1980 0.092 *** 0.089 *** 0.105 *** 0.102 ***
(0.022) (0.022) (0.025) (0.025)

1990 0.101 *** 0.097 *** 0.113 *** 0.110 ***
(0.023) (0.023) (0.026) (0.026)

2000 0.098 ** 0.094 ** 0.110 ^ 0.107 *
(0.020) (0.020) (0.023) (0.023)

2007 0.103 *** 0.096 0.115 ** 0.108
(0.021) (0.021) (0.023) (0.023)

2014 0.103 *** 0.096 0.115 ** 0.108
(0.021) (0.021) (0.023) (0.023)

1990 0.157 0.146 0.173 0.164
(0.038) (0.037) (0.041) (0.041)

2000 0.161 ** 0.150 ** 0.179 *** 0.169 ***
(0.034) (0.034) (0.038) (0.038)

2007 0.188 *** 0.165 *** 0.204 *** 0.184 ***
(0.038) (0.036) (0.040) (0.040)

2014 0.200 *** 0.175 *** 0.216 *** 0.195 ***
(0.037) (0.037) (0.040) (0.041)

1990 0.088 0.082 0.097 0.092
(0.020) (0.020) (0.022) (0.022)

2000 0.080 *** 0.074 *** 0.089 *** 0.084 ***
(0.017) (0.017) (0.019) (0.019)

2007 0.085 *** 0.074 0.093 *** 0.083
(0.017) (0.016) (0.019) (0.018)

2014 0.084 *** 0.074 0.092 *** 0.083
(0.016) (0.016) (0.018) (0.018)

All Households

Families with Children

Households without Children

Notes: Cells report mean estimated segregation; standard deviations are in parentheses below 
the means. Sample is 116 metropolitan areas with over 500,000 residents as of 2007 (Cape 
Coral is excluded due to missing data in 1970). 2007 refers to 2005-09 ACS; 2014 refers to 
2012-16 ACS. ^p≤0.10; *p≤0.05; **p≤0.01; ***p≤0.001; statistical significance tests come from 
regression models with metropolitan area fixed effects that compare the estimate in each 
decade to the prior decade. Note that 2007 and 2014 are both compared to the 2000 
estimate. 

Uncorrected H R Bias-Corrected H R Uncorrected R R Bias-Corrected R R

All Families
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Table 2. Comparison of Published and Bias-Corrected Estimates of Rank-Order Income Segregation, Large 
Metropolitan Areas, by Household Type and Year 

 

Year

1970 0.115 0.093
(0.027) (0.027)

1980 0.112 * 0.088 ***
0.027 0.027

1990 0.134 *** 0.111 ***
(0.029) (0.029)

2000 0.135 0.111
(0.027) (0.026)

2007 0.143 *** 0.114 *
(0.028) (0.027)

2012 0.146 *** 0.116 ***
(0.027) (0.027)

1990 0.123 0.101
(0.021) (0.021)

2000 0.120 ** 0.098 ***
(0.018) (0.018)

2010 0.126 *** 0.101 **
(0.019) (0.019)

1990 0.171 0.153
(0.031) (0.034)

2000 0.179 *** 0.157 *
(0.029) (0.030)

2010 0.209 *** 0.179 ***
(0.031) (0.033)

1990 0.107 0.085
(0.017) (0.018)

2000 0.105 * 0.077 ***
(0.015) (0.015)

2010 0.107 ** 0.078
(0.015) (0.015)

Families with Children

Households without Children

Notes: Cells report means; standard deviations are in parentheses below the means. ^p≤0.10; 
*p≤0.05; **p≤0.01; ***p≤0.001; statistical significance tests come from regression models with 
metropolitan area fixed effects that compare the estimate in each decade to the prior decade. Note 
that 2007 and 2012 are both compared to the 2000 estimate. Top panel: Sample is 116 
metropolitan areas with over 500,000 residents in 2007 (Cape Coral is excluded due to missing data 
in 1970). Published estimates from Bischoff and Reardon (2014) and Reardon and Bischoff (2016). 
2007 refers to 2005-09 ACS and 2012 refers to 2010-14 ACS. Bottom three panels: Sample is 100 
most populous metropolitan areas in 2010. Published estimates from Owens (2016). 2010 refers to 
2008-12 ACS.

Published H R Bias-Corrected H R

All Families

All Households
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Table 3. Replications of Models Estimating the Relationship between Income Inequality and Rank-Order 
Income Segregation 

 
  

0.561 *** 0.480 *** 0.528 ***
(0.085) (0.124) (0.142)

0.443 *** 0.448 *** 0.500 ***
(0.090) (0.083) (0.098)

0.232 *** 0.194 ** 0.230 **
(0.069) (0.075) (0.081)

0.223 *** 0.260 *** 0.275 ***
(0.057) (0.061) (0.066)

0.028 ** 0.031 ** 0.034 **
(0.010) (0.011) (0.012)

^p≤0.10; *p ≤0.05; **p≤0.01; ***p≤0.001

Income Inequality (Gini)

Income Inequality (Gini)

Income Inequality (Gini)

Income Inequality x Families with Children

Fragmentation x Families with Children

Bischoff and Reardon (2014)

Owens (2016)

Estimates Using           
Bias-Corrected H R

Estimates Using                 
Bias-Corrected R R

Notes: Top panel: Models include metropolitan area fixed effects, year indicators, and metropolitan-year covariates 
(population, unemployment rate, proportion under age 18, proportion over age 65, proportion with high school 
diploma, proportion foreign born, proportion female headed families, per capita income, proportions employed in 
manufacturing, construction, financial and real estate, professional and managerial jobs, and proportions of housing 
built within ten, five, and one years). Bootstrapped standard errors in parentheses. Reported results published in 
Reardon and Bischoff 2011, Table 4, “All Families” model, predicting HR. Sample includes 100 largest metropolitan areas 
in 2000; data from 1970, 1980, 1990, and 2000.
Middle panel: Models include metropolitan area fixed effects, year indicators, and metropolitan-year covariates (log 
population, age composition, residents’ educational attainment, unemployment rate, proportion employed in 
manufacturing, per capita income, racial composition, foreign-born composition, and female-headed family rate). 
Bootstrapped standard errors in parentheses. Reported results published in Bischoff and Reardon 2014, Table 5, 
predicting H R . Sample includes 117 metropolitan areas with population >500,000 in 2007 (minus Cape Coral in 1970); 
data from 1970, 1980, 1990, 2000, and 2007-11.

Bottom panel: Models include metropolitan area fixed effects,  district fragmentation in 1990 x year, group (families 
with children) x fragmentation x year, group and year indicators and their interaction, and group-metro-year covariates 
and their interaction with group (log population, age composition, female-headed household rate, racial composition, 
racial segregation, foreign born composition, residents’ educational attainment, unemployment rate, proportion 
employed in manufacturing, and private school enrollment rate). Reported results published in Owens 2016, Table 4, 
Model 2, predicting H R . Sample includes 95 largest metropolitan areas in 2010 with more than 1 school district; data 
from 1990, 2000, and 2008-2012.

Published Estimates 
(using published H R )

Reardon and Bischoff (2011)
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Figure 1: Bias in Uncorrected and Bias-Corrected Binary 𝐻𝐻 and 𝑅𝑅 at 8% Sampling Rate, 380 Metropolitan 
Areas, by Income Percentile 
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Figure 2: Average Bias in Uncorrected and Bias-Corrected Binary 𝐻𝐻 and 𝑅𝑅, 380 Metropolitan Areas, by 
Income Percentile and Sampling Rate 
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Figure 3: Average Bias in Uncorrected and Bias-Corrected Rank-Order 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅, 380 Metropolitan 
Areas, by Sampling Rate 
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Figure 4: Bias in Uncorrected and Bias-Corrected Rank-Order Measures of Income Segregation at 8% 
Sampling Rate, Among Black Families, 380 Metropolitan Areas, by Mean Tract Size 
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Figure 5. Mean Uncorrected and Bias-Corrected Estimates of Income Segregation (Rank-Order H) among 
Families, 116 Largest Metropolitan Areas, 1970 to 2014 

 

Note: Estimates are from Table 1, which reports statistical significance of changes over time.  
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Figure 6. Mean Bias-Corrected Estimates of Income Segregation (Rank-Order H) among Households, 
Families, Families with Children, and Households without Children, 116 Largest Metropolitan Areas, 1970 
to 2014 

 

Note: Estimates are from Table 1, which reports statistical significance of changes over time.  



 
 

46 

Figure 7. Mean Bias-Corrected Estimates of H10, H50, and H90 among Families, 116 Largest Metropolitan 
Areas, 1970 to 2014 

 

Note: Estimates are from Appendix Table C1, which reports statistical significance of changes over time.   
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Appendix A: Derivations of sampling bias in segregation measures 

 

A.1.  Definitions  

To start, we define some notation. We first are interested in computing segregation between two 

groups among a set of 𝐽𝐽 units (e.g., census tracts). Let 𝑝𝑝 denote the group proportion in a given unit. For 

values of 𝑝𝑝 ∈ [0,1], define the Interaction index (𝐼𝐼) and Entropy (𝐸𝐸): 

𝐼𝐼 = 𝑝𝑝(1 − 𝑝𝑝) 

𝐸𝐸 = −[𝑝𝑝 ln 𝑝𝑝 + (1 − 𝑝𝑝) ln(1 − 𝑝𝑝)], 

where we define 0 ln 0 = 0. Note that both 𝐼𝐼 and 𝐸𝐸 are concave down functions of 𝑝𝑝, a feature that leads 

estimates of both to be biased when 𝑝𝑝 is estimated from a sample.17  

The binary variance ratio and information theory segregation indices are respectively defined as 

𝑅𝑅 = 1 −
1
𝐼𝐼
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 

and 

𝐻𝐻 = 1 −
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸𝑗𝑗

𝐽𝐽

𝑗𝑗=1

, 

where 𝐼𝐼 and 𝐸𝐸 are the values of 𝐼𝐼 and 𝐸𝐸 in the whole population; where 𝐼𝐼𝑗𝑗 and 𝐸𝐸𝑗𝑗  are the values of 𝐼𝐼 and 

𝐸𝐸 in unit 𝑗𝑗; and where 𝑡𝑡𝑗𝑗/𝑇𝑇 is the share of the population in unit 𝑗𝑗 (Reardon 2011).  

If 𝑦𝑦 is some ordered variable such as income, the corresponding rank-order income segregation 

indices are 

𝐻𝐻𝑅𝑅 =
1

∫ 𝐸𝐸(𝑟𝑟)𝑑𝑑𝑟𝑟 1
0

 � 𝐸𝐸(𝑟𝑟)𝐻𝐻(𝑟𝑟)𝑑𝑑𝑟𝑟 
1

0
= 2� 𝐸𝐸(𝑟𝑟)𝐻𝐻(𝑟𝑟)𝑑𝑑𝑟𝑟 

1

0
 

                                                      
17 To see this, note that if �̂�𝑝  is a random variable with 𝐸𝐸[�̂�𝑝] = 𝑝𝑝, then the second-order Taylor expansion of a 
concave down function 𝑓𝑓(�̂�𝑝) yields 𝐸𝐸[𝑓𝑓(�̂�𝑝)] = 𝑓𝑓(𝑝𝑝) + 1

2
𝑓𝑓′′(𝑝𝑝)𝑉𝑉𝑏𝑏𝑟𝑟(�̂�𝑝) ≤ 𝑓𝑓(𝑝𝑝), since 𝑓𝑓′′ is negative everywhere. 
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𝑅𝑅𝑅𝑅 =
1

∫ 𝐼𝐼(𝑟𝑟)𝑑𝑑𝑟𝑟 1
0

� 𝐼𝐼(𝑟𝑟)𝑅𝑅(𝑟𝑟)𝑑𝑑𝑟𝑟 
1

0
= 6� 𝐼𝐼(𝑟𝑟)𝑅𝑅(𝑟𝑟)𝑑𝑑𝑟𝑟 

1

0
, 

where 𝐼𝐼(𝑟𝑟), 𝑅𝑅(𝑟𝑟), 𝐸𝐸(𝑟𝑟), and 𝐻𝐻(𝑟𝑟) are the values of 𝐼𝐼, 𝑅𝑅, 𝐸𝐸, and 𝐻𝐻 when the population is divided into 

groups defined by whether 𝑦𝑦 is above or below the 100 × 𝑟𝑟𝑡𝑡ℎ percentile of 𝑦𝑦. For example, 𝐻𝐻(.5) is the 

value of 𝐻𝐻 computed between those with above and below median values of 𝑦𝑦. The rank-order measures 

are weighted integrals of the binary indices over values of 𝑟𝑟 ∈ (0,1) (Reardon 2011). 

The formulas above assume we observe 𝑝𝑝 and 𝑡𝑡 without error in each unit. Instead, here we 

assume we know 𝑡𝑡 with certainty but must estimate 𝑝𝑝 from a sample.18 More specifically, from each unit 

𝑗𝑗 ∈ {1, … , 𝐽𝐽} we observe a simple random sample of size 𝑛𝑛𝑗𝑗, drawn without replacement from the 

population in the unit, which is of known finite size 𝑡𝑡𝑗𝑗. Let 𝑇𝑇 = ∑ 𝑡𝑡𝑗𝑗
𝐽𝐽
𝑗𝑗=1  denote the total population across 

the 𝐽𝐽 units, and let 𝑡𝑡̅ = 𝑇𝑇
𝐽𝐽
 denote the average unit population size. Let 𝑟𝑟𝑗𝑗 = 𝑛𝑛𝑗𝑗/𝑡𝑡𝑗𝑗 denote the sampling rate 

in unit 𝑗𝑗. Let 𝑡𝑡 − 1� = �1
𝐽𝐽
∑ 1

𝑡𝑡𝑗𝑗−1
𝐽𝐽
𝑗𝑗=1 �

−1
denote the harmonic mean of 𝑡𝑡𝑗𝑗 − 1. Let �̃�𝑟 = �1

𝐽𝐽
∑ 1

𝑟𝑟𝑗𝑗
𝐽𝐽
𝑗𝑗=1 �

−1
 indicate 

the harmonic mean of the units’ sampling rates.  

Now define the bias factor 

𝐵𝐵 =
𝑧𝑧

𝑡𝑡̅ − 1
∙

1 − �̃�𝑟
�̃�𝑟

, 

where 𝑧𝑧 is a function of the ratio of the arithmetic and harmonic means of 𝑡𝑡𝑗𝑗 − 1: 

𝑧𝑧 = 1 +
1
𝑡𝑡̅ �
𝑡𝑡̅ − 1
𝑡𝑡 − 1� − 1�. 

Note that if the sampling rate 𝑟𝑟𝑗𝑗 = 𝑟𝑟 is constant across units, the bias factor will be 

𝐵𝐵 = 𝑧𝑧 ∙
1 − 𝑟𝑟
𝑛𝑛� − 𝑟𝑟

. 

                                                      
18 As we show below, this is actually a stronger assumption than we need; we require only that the estimates of 𝑡𝑡𝑗𝑗 
be unbiased and that the error in the estimate of �̂�𝑡𝑗𝑗 be uncorrelated with the error in the estimated diversity 𝐼𝐼𝑗𝑗  or 
𝐸𝐸�𝑗𝑗. Error in �̂�𝑡𝑗𝑗 will contribute to sampling variance in estimated segregation, but will not contribute to bias, so long as 
the error in �̂�𝑡𝑗𝑗 is independent of the error in 𝐼𝐼𝑗𝑗  or 𝐸𝐸�𝑗𝑗. 
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Finally, note that, assuming at least one person is sampled per unit, 0 ≤ 𝐵𝐵 ≤ 𝑧𝑧.19  

We show below that the sampling bias in segregation measures is approximately proportional to 

𝐵𝐵 when the unit populations 𝑡𝑡𝑗𝑗 are moderately large. 𝐵𝐵 is a decreasing function of both the average unit 

size 𝑡𝑡̅ and the harmonic mean of the sampling rate across units, �̃�𝑟. That is, we show that bias in 

segregation measures is smaller as unit population increases and/or as sampling rates increase. 

 

A.2.  Expected value of 𝑰𝑰�: 

The complete Taylor expansion of 𝐼𝐼 around 𝑝𝑝 is: 

𝐼𝐼 = �̂�𝑝(1 − �̂�𝑝) 

= 𝑝𝑝(1 − 𝑝𝑝) + (1 − 2𝑝𝑝)(�̂�𝑝 − 𝑝𝑝) − (�̂�𝑝 − 𝑝𝑝)2. 

In addition, note: 

𝐸𝐸[(�̂�𝑝 − 𝑝𝑝)] = 0 

𝐸𝐸[(�̂�𝑝 − 𝑝𝑝)2] = 𝑏𝑏𝑝𝑝(1 − 𝑝𝑝), 

where 𝑏𝑏 = 1−𝑟𝑟
𝑟𝑟(𝑡𝑡−1) under sampling without replacement.20 From this it follows that  

E�𝐼𝐼� = 𝐼𝐼 − 𝑏𝑏𝑝𝑝(1 − 𝑝𝑝) 

= (1 − 𝑏𝑏)𝐼𝐼. 

A.3.  Expected value of 𝑬𝑬�: 

The second-order Taylor expansion of 𝐸𝐸�  is: 

𝐸𝐸� = −𝑝𝑝 ln(𝑝𝑝) − (1 − 𝑝𝑝) ln(1 − 𝑝𝑝) + ln �
1 − 𝑝𝑝
𝑝𝑝

� (�̂�𝑝 − 𝑝𝑝) −
1

2𝑝𝑝(1 − 𝑝𝑝)
(�̂�𝑝 − 𝑝𝑝)2 + 𝑒𝑒 

So  

                                                      
19 Note that if we assume sampling with replacement, we define the bias factor instead as 𝐵𝐵 = 1

𝑡𝑡̅�̃�𝑟
. In this case, if 𝑟𝑟𝑗𝑗 =

𝑟𝑟 is constant across units, then 𝐵𝐵 = 1
𝑛𝑛�

. Using this definition of 𝐵𝐵, all the derivations below hold under sampling with 
replacement. We do not show these derivations in the interest of space.  
20 When sampling with replacement, 𝑏𝑏 = 1/𝑛𝑛. 
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E�𝐸𝐸�� = 𝐸𝐸 − �
1

2𝑝𝑝(1 − 𝑝𝑝)� 𝑏𝑏𝑝𝑝
(1 − 𝑝𝑝) + 𝐸𝐸(𝑒𝑒) 

= 𝐸𝐸 −
𝑏𝑏
2

+ 𝐸𝐸(𝑒𝑒) 

≈ 𝐸𝐸 −
𝑏𝑏
2

. 
 
Simulations (not shown) show that this approximation for 𝐸𝐸�𝐸𝐸�� is inaccurate for very large or small values 

of 𝑝𝑝 (generally when 𝑝𝑝 < 𝑏𝑏
4
 or 𝑝𝑝 > 1 − 𝑏𝑏

4
), and is only approximate for other values of 𝑝𝑝. Nonetheless, 

approximations based on higher-order Taylor expansions did not perform better in our simulations, so we 

use the second-order approximation. 

 

A.4. Expected value of 𝑹𝑹� 

Here we assume 𝑇𝑇 and 𝐽𝐽 are large, so that 𝐸𝐸 �1
𝐼𝐼
� ≈ 1

𝐼𝐼
 and 𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼, 𝐼𝐼𝑗𝑗� ≈ 0. We also assume that the 

sampling rate is independent of unit size or diversity, so that 
1−𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗

⊥ 𝐼𝐼𝑗𝑗 and 
1−𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗

⊥ 𝑡𝑡𝑗𝑗. We denote the 

population covariance of 𝑡𝑡𝑗𝑗 and 𝐼𝐼𝑗𝑗 as 𝐶𝐶 = 1
𝐽𝐽
∑ �𝑡𝑡𝑗𝑗 − 𝑡𝑡̅��𝐼𝐼𝑗𝑗 − 𝐼𝐼�̅𝐽𝐽
𝑗𝑗=1 . The expected value of 𝑅𝑅� will then be:21 

𝐸𝐸�𝑅𝑅�� = 1 − 𝐸𝐸 �
1
𝐼𝐼
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� 

= 1 − 𝐸𝐸 �
1
𝐼𝐼
� ∙ 𝐸𝐸 ��

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� − 𝐶𝐶𝐶𝐶𝐶𝐶�
1
𝐼𝐼 

,�
𝑡𝑡𝑗𝑗
𝑇𝑇
𝐼𝐼𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� 

≈ 1 −
1
𝐼𝐼
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸�𝐼𝐼𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

 

= 1 −
1
𝐼𝐼
�

𝑡𝑡𝑗𝑗
𝑇𝑇 �

1 − 𝑏𝑏𝑗𝑗�𝐼𝐼𝑗𝑗 

= 𝑅𝑅 +
1
𝐼𝐼
��

𝑡𝑡𝑗𝑗 − 1
𝑇𝑇 �

1 − 𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗�𝑡𝑡𝑗𝑗 − 1�

� 𝐼𝐼𝑗𝑗 + �
1
𝑇𝑇 �

1 − 𝑟𝑟𝑗𝑗
𝑟𝑟𝑗𝑗�𝑡𝑡𝑗𝑗 − 1�

� 𝐼𝐼𝑗𝑗� 

                                                      
21 Note that if we do not assume that 𝑡𝑡𝑗𝑗 is known, but instead assume that we observe �̂�𝑡𝑗𝑗, an unbiased estimate of 𝑡𝑡𝑗𝑗, 
then the third line of the derivation below will include a term that includes the summation ∑ 𝑐𝑐𝐶𝐶𝐶𝐶��̂�𝑡𝑗𝑗, 𝐼𝐼𝑗𝑗�

𝐽𝐽
𝑗𝑗=1 ; under 

the assumption that sampling error in �̂�𝑡𝑗𝑗 is independent of the sampling error in 𝐼𝐼𝑗𝑗, this term will be zero. So the 
assumption that 𝑡𝑡𝑗𝑗 is known with certainty is not essential to the derivation. The same is true in the derivation below 
of the expected value of 𝐻𝐻�. 
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≈ 𝑅𝑅 +
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼

1
𝐽𝐽
�𝐼𝐼𝑗𝑗 +

1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼

1
𝐽𝐽
�

1
𝑡𝑡𝑗𝑗 − 1

𝐼𝐼𝑗𝑗 

≈ 𝑅𝑅 +
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼

𝐼𝐼 ̅+
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼 �

1
𝑡𝑡 − 1� 𝐼𝐼̅−

1
𝐽𝐽(𝑡𝑡̅ − 1)2��𝑡𝑡𝑗𝑗 − 𝑡𝑡̅��𝐼𝐼𝑗𝑗 − 𝐼𝐼�̅� 

= 𝑅𝑅 +
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼

�1 +
1

𝑡𝑡 − 1��𝐼𝐼̅ −
1 − �̃�𝑟

�̃�𝑟𝑡𝑡̅𝐼𝐼(𝑡𝑡̅ − 1)2 𝐶𝐶 

= 𝑅𝑅 +
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼

�1 +
1

𝑡𝑡 − 1���𝐼𝐼(1 − 𝑅𝑅) −
1
𝑡𝑡̅
𝐶𝐶� −

1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅𝐼𝐼(𝑡𝑡̅ − 1)2 𝐶𝐶 

= 𝑅𝑅 +
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅

�1 +
1

𝑡𝑡 − 1�� (1 − 𝑅𝑅)−
1 − �̃�𝑟
�̃�𝑟𝑡𝑡̅2𝐼𝐼

��1 +
1

𝑡𝑡 − 1��  +
𝑡𝑡̅

(𝑡𝑡̅ − 1)2�𝐶𝐶 

= 𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅) −
𝐵𝐵
𝑡𝑡̅𝐼𝐼 �

1 +
𝑡𝑡̅

�1 + 1
𝑡𝑡 − 1�� (𝑡𝑡̅ − 1)2

�𝐶𝐶 

= 𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅) −
𝐵𝐵
𝑡𝑡̅𝐼𝐼
�1 +

1
𝑧𝑧(𝑡𝑡̅ − 1)�𝐶𝐶 

= 𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅) −
𝐵𝐵

(𝑡𝑡̅ − 1)𝐼𝐼
�1 +

1 − 𝑧𝑧
𝑡𝑡̅𝑧𝑧

� 𝐶𝐶. 

When 𝑡𝑡̅ and 𝑡𝑡 − 1�  are large, 𝑧𝑧 ≈ 1 and 1−𝑧𝑧
𝑡𝑡̅𝑧𝑧

≈ 1
𝑡𝑡̅2
≈ 0, so we have 

 

𝐸𝐸�𝑅𝑅�� ≈ 𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅)−
𝐵𝐵

(𝑡𝑡̅ − 1)𝐼𝐼
𝐶𝐶. 

Conditional on �̃�𝑟, the first bias term is approximately inversely proportional to 𝑡𝑡̅ − 1. The second is 

approximately inversely proportional to (𝑡𝑡̅ − 1)2𝐼𝐼. Moreover, if 𝑡𝑡𝑗𝑗 does not vary much among units, 𝐶𝐶 will 

be small. In general, then, the first bias term is more important that the second, except when 𝐼𝐼 is close to 

zero and/or the unit populations are small and variable.  

    

A.5. Expected value of 𝑯𝑯�  

Again, we assume 𝑇𝑇 and 𝐽𝐽 are large, so that 𝐸𝐸 �1
𝐸𝐸�
� ≈ 1

𝐸𝐸
 and 𝐶𝐶𝐶𝐶𝐶𝐶�𝐸𝐸� ,𝐸𝐸�𝑗𝑗� ≈ 0. We also assume 𝑟𝑟𝑗𝑗 ⊥ 𝑡𝑡𝑗𝑗. Let 𝑒𝑒𝑗𝑗∗ 

be the error in the approximation for the bias in 𝐸𝐸�𝑗𝑗: 𝑒𝑒𝑗𝑗∗ = 𝐸𝐸�𝐸𝐸�𝑗𝑗� − 𝐸𝐸𝑗𝑗 + 𝑏𝑏𝑗𝑗
2

. The expected value of 𝐻𝐻� will 

be: 

𝐸𝐸�𝐻𝐻�� = 1 − 𝐸𝐸 �
1
𝐸𝐸�
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸�𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� 
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= 1 − 𝐸𝐸 �
1
𝐸𝐸�
� ∙ 𝐸𝐸 ��

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸�𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� − 𝐶𝐶𝐶𝐶𝐶𝐶 �
1
𝐸𝐸�

,�
𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸�𝑗𝑗

𝐽𝐽

𝑗𝑗=1

� 

≈ 1 −
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝐸𝐸�𝐸𝐸�𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

 

= 1 −
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
�𝐸𝐸𝑗𝑗 −

𝑏𝑏𝑗𝑗
2

+ 𝑒𝑒𝑗𝑗∗�
𝐽𝐽

𝑗𝑗=1

 

= 𝐻𝐻 +
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝑏𝑏𝑗𝑗
2

𝐽𝐽

𝑗𝑗=1

−
1
𝐸𝐸
�

𝑡𝑡𝑗𝑗
𝑇𝑇
𝑒𝑒𝑗𝑗∗

𝐽𝐽

𝑗𝑗=1

 

= 𝐻𝐻 +
1

2𝐸𝐸𝑡𝑡̅
∙

1
𝐽𝐽
�

𝑡𝑡𝑗𝑗(1 − 𝑟𝑟𝑗𝑗)
�𝑡𝑡𝑗𝑗 − 1�𝑟𝑟𝑗𝑗

𝐽𝐽

𝑗𝑗=1

−
�̅�𝑒∗

𝐸𝐸
 

= 𝐻𝐻 +
1 − �̃�𝑟
2𝐸𝐸�̃�𝑟

1
𝑡𝑡̅
�1 +

1
𝑡𝑡 − 1��−

�̅�𝑒∗

𝐸𝐸
 

= 𝐻𝐻 +
𝐵𝐵

2𝐸𝐸
−
�̅�𝑒∗

𝐸𝐸
 

≈ 𝐻𝐻 +
𝐵𝐵

2𝐸𝐸
 

The last approximation depends on the assumption that the average error in the approximation of the 

expected value of the 𝐸𝐸�𝑗𝑗’s is small relative to 𝐸𝐸. This will be true if 𝑡𝑡𝑗𝑗 is large, but when 𝑡𝑡𝑗𝑗 is small the 

second-order Taylor expansion is not a good approximation of 𝐸𝐸�𝑗𝑗, particularly when 𝐸𝐸𝑗𝑗  is small (when 𝑝𝑝 is 

near 0 or 1). In such cases—when 𝐻𝐻 measures the segregation of one group that makes up a small 

proportion of the population from another, and when the units are small—the expression above may not 

be a good approximation of the expected value of 𝐻𝐻�. 

 

A.6.  Expected value of 𝑹𝑹�𝑹𝑹 

The expected value of 𝑅𝑅�𝑅𝑅 will be: 

𝐸𝐸�𝑅𝑅�𝑅𝑅� = 𝐸𝐸 �6� 𝐼𝐼(𝑟𝑟)𝑅𝑅�(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
� 

= 6� 𝐼𝐼(𝑟𝑟)𝐸𝐸�𝑅𝑅�(𝑟𝑟)�𝑑𝑑𝑟𝑟
1

0
 

≈ 6� 𝐼𝐼(𝑟𝑟) �𝑅𝑅(𝑟𝑟) + 𝐵𝐵�1 − 𝑅𝑅(𝑟𝑟)� −
𝐵𝐵

(𝑡𝑡̅ − 1)𝐼𝐼(𝑟𝑟) �1 +
1 − 𝑧𝑧
𝑡𝑡̅𝑧𝑧

� 𝐶𝐶(𝑟𝑟)� 𝑑𝑑𝑟𝑟
1

0
 

= 𝑅𝑅𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅𝑅𝑅)−
6𝐵𝐵

(𝑡𝑡̅ − 1) �1 +
1 − 𝑧𝑧
𝑡𝑡̅𝑧𝑧

�� 𝐶𝐶(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
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≈ 𝑅𝑅𝑅𝑅 + 𝐵𝐵(1 − 𝑅𝑅𝑅𝑅)−
6𝐵𝐵

(𝑡𝑡̅ − 1)� 𝐶𝐶(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
. 

 
A.7. Expected value of 𝑯𝑯�𝑹𝑹 

The expected value of 𝐻𝐻�𝑅𝑅 will be: 

𝐸𝐸�𝐻𝐻�𝑅𝑅� = 𝐸𝐸 �2� 𝐸𝐸(𝑟𝑟)𝐻𝐻�(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
� 

= 2� 𝐸𝐸(𝑟𝑟)𝐸𝐸�𝐻𝐻�(𝑟𝑟)�𝑑𝑑𝑟𝑟
1

0
 

≈ 2� 𝐸𝐸(𝑟𝑟) �𝐻𝐻(𝑟𝑟) +
𝐵𝐵

2𝐸𝐸(𝑟𝑟)� 𝑑𝑑𝑟𝑟
1

0
 

= 𝐻𝐻𝑅𝑅 + 𝐵𝐵. 
 

A.8. Correcting segregation measures for small sample bias. 

We can compute bias-corrected measures of segregation as follows: 

𝐻𝐻�∗ = 𝐻𝐻� −
𝐵𝐵

2𝐸𝐸
 

𝑅𝑅�∗ =
𝑅𝑅� − 𝐵𝐵 �1− 1

(𝑡𝑡̅ − 1)𝐼𝐼 𝐶𝐶�

1 − 𝐵𝐵
 

These formulas assume we know 𝐸𝐸, 𝐼𝐼, and 𝐶𝐶. Because 𝐸𝐸 and 𝐼𝐼 are estimated from the full sample, they 

will be estimated precisely and with little bias as long as the total sample is large. We assume 𝐶𝐶 ≈ 0. Even 

if this is not strictly accurate, the bias due to non-zero 𝐶𝐶 will be trivial unless the sampling rate is low, the 

average unit size is small, and 𝐼𝐼 is small.  

 

A.9.  Bias in Other Segregation Measures 

We focus in this paper on H and R. Here, however, we briefly demonstrate that other sample-

based segregation estimates will also be biased. Both the Dissimilarity and Gini indices can be written as 

the weighted sums of differences in the absolute values of estimated proportions (James and Taeuber 

1985), and the expected value of the absolute value of a random variable will be biased upwards.  
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The dissimilarity index can be written as a weighted average of ��̂�𝑝𝑗𝑗 − 𝑃𝑃� over all tracts 𝑗𝑗, where 𝑃𝑃 

is the proportion of a group in the total population (and where 𝑃𝑃 is assumed known here for simplicity). 

When 𝐸𝐸��̂�𝑝𝑗𝑗� = 𝑝𝑝𝑗𝑗  the expected value of this difference is biased upwards relative to its true value. To see 

this, consider the case where 𝑝𝑝 ≥ 𝑃𝑃  (here 𝜌𝜌(𝑥𝑥) is the density function describing the sampling 

distribution of �̂�𝑝):  

𝐸𝐸[|�̂�𝑝 − 𝑃𝑃|] = �𝜌𝜌(𝑥𝑥)|𝑥𝑥 − 𝑃𝑃|𝑑𝑑𝑥𝑥
𝑥𝑥

  

= � 𝜌𝜌(𝑥𝑥)(𝑥𝑥 − 𝑃𝑃)𝑑𝑑𝑥𝑥
𝑥𝑥≥𝑃𝑃

+ � 𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥<𝑃𝑃

 

= �𝜌𝜌(𝑥𝑥)(𝑥𝑥 − 𝑃𝑃)𝑑𝑑𝑥𝑥
𝑥𝑥

+ 2� 𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥<𝑃𝑃

 

= 𝐸𝐸[𝑥𝑥] − 𝑃𝑃 + 2� 𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥<𝑃𝑃

 

= (𝑝𝑝 − 𝑃𝑃) + 2� 𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥<𝑃𝑃

 

= |𝑝𝑝 − 𝑃𝑃| + 2� 𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥<𝑃𝑃

 

≥ |𝑝𝑝 − 𝑃𝑃|. 

Likewise, in the case where 𝑝𝑝 < 𝑃𝑃, we get 

𝐸𝐸[|�̂�𝑝 − 𝑃𝑃|] = �𝜌𝜌(𝑥𝑥)(𝑃𝑃 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥

+ 2� 𝜌𝜌(𝑥𝑥)(𝑥𝑥 − 𝑃𝑃)𝑑𝑑𝑥𝑥
𝑥𝑥≥𝑃𝑃

 

= |𝑝𝑝 − 𝑃𝑃| + 2� 𝜌𝜌(𝑥𝑥)(𝑥𝑥 − 𝑃𝑃)𝑑𝑑𝑥𝑥
𝑥𝑥≥𝑃𝑃

 

≥ |𝑝𝑝 − 𝑃𝑃|. 

Similarly, the Gini index of segregation can be written a weighted average of ��̂�𝑝𝑗𝑗 − �̂�𝑝𝑘𝑘� over all 

pairs of tracts 𝑗𝑗 and 𝑘𝑘. The expected value of the absolute difference in two estimated proportions is 

biased upwards relative to its true value. Consider, for example, the case where 𝑝𝑝 > 𝑞𝑞:  

𝐸𝐸[|�̂�𝑝 − 𝑞𝑞�|] = � �𝜌𝜌(𝑥𝑥,𝑦𝑦)|𝑥𝑥 − 𝑦𝑦|𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 
𝑦𝑦𝑥𝑥
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= |𝑝𝑝 − 𝑞𝑞| + 2�� 𝜌𝜌(𝑥𝑥,𝑦𝑦)|𝑦𝑦 − 𝑥𝑥|𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥 
𝑦𝑦>𝑥𝑥𝑥𝑥

 

≥ |𝑝𝑝 − 𝑞𝑞|. 

Finally, note that exposure measures are also subject to sampling bias. The exposure of black 

households to poor households, for example is defined as  

𝑃𝑃𝑏𝑏 𝑝𝑝 = �
𝑏𝑏𝑗𝑗
𝐵𝐵
𝑝𝑝𝑗𝑗

𝑗𝑗

, 

where 𝑏𝑏𝑗𝑗 and 𝐵𝐵 are the number of black households in tract 𝑗𝑗 and the population, respectively, and 𝑝𝑝𝑗𝑗  is 

the poverty rate in tract 𝑗𝑗. If 𝑏𝑏𝑗𝑗 and 𝑝𝑝𝑗𝑗  must be estimated from samples, then the expected value of 𝑃𝑃𝑏𝑏 𝑝𝑝 

will be  

𝐸𝐸 ��
𝑏𝑏�𝑗𝑗
𝐵𝐵 𝑝𝑝�𝑗𝑗

𝑗𝑗
� = 𝑃𝑃𝑏𝑏 𝑝𝑝 + �𝑐𝑐𝐶𝐶𝐶𝐶�𝑏𝑏�𝑗𝑗 , �̂�𝑝𝑗𝑗�

𝑗𝑗

.  

So the estimated exposure measure will be biased to the extent that race and poverty are correlated 

within tracts. If, on average, the black households in a tract are poorer than the white households in a 

tract, the covariance term will be positive, and the exposure measure will be upwardly biased.  

  



 
 

56 

Appendix B: Additional Results from Simulations 

Appendix B presents additional simulation results. Figures B1 and B2 present the uncorrected and 

bias-corrected binary segregation measures 𝑅𝑅� and 𝐻𝐻� as a function of the proportion of families in the 

metropolitan area below the income threshold used to define the binary measure; these are analogous to 

Figures 1 and 2. Unlike Figures 1 and 2, however, here we have artificially constrained all tracts in each 

metropolitan area to have the same population size, in this case, 1000. By holding tract size constant, 

𝐶𝐶 (see equation 5) is set to zero. Recall that in the bias correction derivation, we assume that 𝐶𝐶 = 0, 

despite the fact that 𝐶𝐶 is generally positive for high-income threshold and negative for low-income 

thresholds in the data generating models we use in our simulations. Figures B1 and B2 show that when 

𝐶𝐶 = 0, the bias-corrected 𝑅𝑅�∗ estimator performs equally well at all income thresholds. The bias-corrected 

𝐻𝐻�∗ estimator, however, still performs poorly at income thresholds near the top or bottom of the income 

distribution, a result of the failure of the second-order Taylor expansion of 𝐸𝐸�  used in Appendix section 

A.3.  

Table B1 presents the proportion of bias explained in corrected rank-order 𝐻𝐻𝑅𝑅 and 𝑅𝑅𝑅𝑅 by 

sampling rate, mean tract size, and race. This table provides additional guidance on when the bias-

corrected rank-order segregation measures fail to eliminate bias. For “All Families”, both 𝐻𝐻�𝑅𝑅∗ and 𝑅𝑅�𝑅𝑅∗ 

perform very well, virtually eliminating all bias, even at low sampling rates and small mean tract sizes. This 

is not the case for black and Hispanic families. Here it is clear that 𝐻𝐻�𝑅𝑅∗, in particular, does not effectively 

eliminate bias when the sampling rate is small and the mean tract size is small. This is due to the fact that 

the black family population is both small and unevenly distributed among geographic units (tracts) with 

metropolitan areas. For “Black Families” at a 4% sampling rate, it is only at a mean tract size of 300 that 

more than 70% of the bias is removed. Below this mean tract size, 𝐻𝐻𝑅𝑅∗ is not an improvement over 𝐻𝐻𝑅𝑅. A 

similar pattern is evident for Hispanic families, although the bias correction is an improvement when 

mean tract size reaches roughly 150. This mirrors a general rule of thumb: 𝐻𝐻𝑅𝑅∗ typically represents an 
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improvement over 𝐻𝐻𝑅𝑅 when mean tract size exceeds 200. In nearly all cases, 𝑅𝑅𝑅𝑅∗ outperforms 𝐻𝐻𝑅𝑅∗, and is 

an improvement over 𝑅𝑅𝑅𝑅 when mean tract size is greater than 100.  

The poor performance of the bias-corrected estimators of black and Hispanic income segregation 

is due to the confluence of three factors: variable population sizes across tracts (meaning that the 

number of black or Hispanic families varies substantially across tracts, due to racial residential segregation 

patterns); small within-tract samples in many tracts; and an underlying correlation between the tract 

population size and tract median income. In the absence of any one of these conditions, the bias-

corrected estimators perform very well. In many metropolitan areas, however, all three conditions hold 

for black and Hispanic populations. As a result, the bias-corrected estimators are of little use in such 

places. More generally, researchers are cautioned that when the population of interest is unevenly 

distributed among geographic units and samples are small in many units, the bias-corrected rank-order 

estimators may fail to provide accurate estimates.  
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Table B1. Proportion of bias explained in rank-order 𝐻𝐻 and 𝑅𝑅, by sampling rate, mean tract size, and race, 
380 metropolitan areas, 100 replications. 
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Figure B1. Bias in Uncorrected and Corrected Binary 𝐻𝐻 and 𝑅𝑅 at 8% Sampling Rate, 380 Metropolitan 
Areas, by Income Percentile, All Tracts Adjusted to Have a Total Population of 1000
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Figure B2. Average Bias in Uncorrected and Corrected Binary 𝐻𝐻 and 𝑅𝑅, 380 Metropolitan Areas, by 
Income Percentile and Sampling Rate, All Tracts Adjusted to Have a Total Population of 1000 
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Appendix C: Estimates of Income Segregation and Replication of Previously Published Results  
 

Appendix C provides additional income segregation estimates and replication of published results 

using the bias-corrected estimators. Appendix Table C1 provides uncorrected and bias-corrected 

estimates of binary family income segregation (H and R) at the 10th, 50th, and 90th percentiles of the 

income distribution from 1970 to 2014. (Figure 7 presents bias-corrected H10, H50, and H90.) 

Appendix Table C2 presents estimates of rank-order income segregation among families by 

racial/ethnic group.  Bias-corrected estimates of 𝑅𝑅𝑅𝑅 from the top and bottom three panels are presented 

in Appendix Figure C1. The second and third panels provide additional results for white families, 

presenting average income segregation only in the metropolitan areas that meet the sample criteria (over 

500,000 residents as of 2007, at least 10,000 families of the relevant racial/ethnic group from 1970-2000, 

and average tract size of at least 200 families of the relevant racial group) for black and Hispanic families, 

respectively.22 Comparing the second and fifth panels, for example, confirms that income segregation 

among white families increased less than among black families in the same set of 22 metropolitan areas.  

Finally, Tables C3-C5 replicate multivariate regression tables from previously published papers 

estimating the relationship between income inequality and rank-order income segregation. The key 

coefficients from these tables are presented in Table 3.

                                                      
22 The 22 metropolitan areas in the black family sample are: Atlanta-Sandy Springs-Marietta, Augusta-Richmond 
County, Baltimore-Towson, Baton Rouge, Birmingham-Hoover, Charleston-North Charleston, Charlotte-Gastonia-
Concord, Columbia, Detroit-Livonia-Dearborn, Fort Lauderdale-Pompano Beach-Deerfield, Greensboro-High Point, 
Houston-Baytown-Sugar Land, Jackson, Jacksonville, Little Rock-North Little Rock, Memphis, New Orleans-Metairie-
Kenner, Newark-Union, Raleigh-Cary, Richmond, Virginia Beach-Norfolk-Newport News, and Washington, DC -
Arlington-Alexandria. The 20 metropolitan areas in the Hispanic family sample are: Albuquerque, Austin-Round 
Rock, Bakersfield, Dallas-Plano-Irving, El Paso, Fresno, Houston-Baytown-Sugar Land, Los Angeles-Long Beach-
Glendale, McAllen-Edinburg-Pharr, Miami-Miami Beach-Kendall, New York-Wayne-White Plains, Oxnard-Thousand 
Oaks-Ventura, Phoenix-Mesa-Scottsdale, Riverside-San Bernardino-Ontario, San Antonio, San Diego-Carlsbad-San 
Marcos, San Jose-Sunnyvale-Santa Clara, Santa Ana-Anaheim-Irvine, Stockton, and Tucson. 
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Table C1. Mean Uncorrected and Bias-Corrected Estimates of Binary Family Income Segregation at the 10th, 50th, and 90th Income Percentiles, 
116 Largest Metropolitan Areas, 1970 to 2014  

 

1970 0.077 0.071 0.092 0.089 0.140 0.132
(0.024) (0.024) (0.028) (0.028) (0.038) (0.039)

1980 0.090 *** 0.079 *** 0.089 ^ 0.085 ** 0.123 *** 0.113 ***
(0.030) (0.031) (0.027) (0.026) (0.038) (0.038)

1990 0.121 *** 0.112 *** 0.106 *** 0.102 *** 0.159 *** 0.149 ***
(0.039) (0.039) (0.028) (0.028) (0.041) (0.041)

2000 0.113 *** 0.104 *** 0.109 0.105 0.153 ** 0.143 **
(0.031) (0.031) (0.027) (0.027) (0.037) (0.037)

2007 0.126 *** 0.107 ^ 0.116 *** 0.108 ^ 0.167 *** 0.148 **
(0.032) (0.030) (0.028) (0.028) (0.039) (0.038)

2014 0.124 *** 0.106 0.118 *** 0.110 ** 0.164 *** 0.146
(0.029) (0.029) (0.028) (0.028) (0.038) (0.037)

1970 0.057 0.054 0.120 0.116 0.105 0.101
(0.020) (0.020) (0.035) (0.035) (0.034) (0.034)

1980 0.069 *** 0.064 *** 0.115 * 0.110 ** 0.093 *** 0.087 ***
(0.026) (0.027) (0.034) (0.033) (0.032) (0.032)

1990 0.095 *** 0.090 *** 0.137 *** 0.132 *** 0.117 *** 0.112 ***
(0.036) (0.036) (0.035) (0.035) (0.036) (0.036)

2000 0.086 *** 0.081 *** 0.141 * 0.136 ^ 0.114 0.109
(0.028) (0.028) (0.034) (0.034) (0.033) (0.033)

2007 0.095 *** 0.085 * 0.149 *** 0.139 0.118 * 0.108
(0.028) (0.028) (0.035) (0.035) (0.034) (0.033)

2014 0.092 *** 0.082 0.152 *** 0.142 ** 0.116 0.106 ^
(0.025) (0.025) (0.035) (0.035) (0.033) (0.033)

Notes: Cells report means with standard deviations beneath. Sample is 116 metropolitan areas with over 500,000 residents as of 2007 (Cape Coral is excluded 
due to missing data in 1970). 2007 refers to 2005-09 ACS and 2014 refers to 2012-16 ACS. ^p≤0.10; ***p≤0.05; **p≤0.01; ***p≤0.001; statistical significance 
tests come from regression models with metropolitan area fixed effects that compare the estimate in each decade to the prior decade. Note that 2007 and 2014 
are both compared to the 2000 estimate.

Bias-Corrected R90Uncorrected R90Bias-Corrected R50Uncorrected R50Bias-Corrected R10Uncorrected  R10

Bias-Corrected H90Uncorrected  H10 Bias-Corrected H10 Uncorrected H50 Bias-Corrected H50 Uncorrected H90
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Table C2. Mean Uncorrected and Bias-Corrected Estimates of Rank-Order Family Income Segregation, by 
Race/Ethnicity, 2000-2014 

  

Year

2000 0.102 0.095 0.114 0.107
(0.025) (0.024) (0.028) (0.028)

2007 0.112 *** 0.097 *** 0.123 *** 0.109 *
(0.028) (0.027) (0.031) (0.030)

2014 0.114 *** 0.099 *** 0.124 *** 0.111 ***
(0.028) (0.026) (0.030) (0.030)

2000 0.105 0.097 0.117 0.110
(0.021) (0.021) (0.023) (0.023)

2007 0.114 *** 0.097 0.125 *** 0.110
(0.026) (0.025) (0.029) (0.029)

2014 0.119 *** 0.101 * 0.130 *** 0.114 ^
(0.025) (0.025) (0.028) (0.028)

2000 0.127 0.119 0.143 0.135
(0.024) (0.024) (0.027) (0.026)

2007 0.143 *** 0.127 ** 0.157 *** 0.143 **
(0.029) (0.027) (0.032) (0.030)

2014 0.141 *** 0.126 * 0.155 *** 0.142 *
(0.030) (0.028) (0.032) (0.031)

2000 0.097 0.089 0.108 0.101
(0.022) (0.021) (0.025) (0.024)

2007 0.103 *** 0.086 *** 0.112 *** 0.097 ***
(0.023) (0.020) (0.025) (0.023)

2014 0.103 *** 0.085 *** 0.111 *** 0.095 ***
(0.023) (0.020) (0.025) (0.023)

2000 0.113 0.093 0.123 0.105
(0.025) (0.023) (0.028) (0.027)

2007 0.152 *** 0.112 *** 0.160 *** 0.124 ***
(0.028) (0.025) (0.030) (0.029)

2014 0.159 *** 0.118 *** 0.167 *** 0.130 ***
(0.027) (0.024) (0.029) (0.027)

2000 0.104 0.084 0.113 0.095
(0.019) (0.014) (0.020) (0.015)

2007 0.135 *** 0.103 *** 0.143 *** 0.114 ***
(0.029) (0.019) (0.029) (0.021)

2014 0.137 *** 0.107 *** 0.146 *** 0.119 ***
(0.026) (0.018) (0.026) (0.020)

Non-Hispanic White Families

Uncorrected H R Bias-Corrected H R Uncorrected R R Bias-Corrected R R

White Families 

White Families  (Black Metro Sample)

White Families (Hispanic Metro Sample)

Black Families 

Hispanic Families

Notes: Cells report means with standard deviations beneath. Sample is metropolitan areas with 
over 500,000 residents as of 2007 (Cape Coral is excluded due to missing data in 1970), at least 
10,000 families of the relevant racial/ethnic group from 1970-2000, and average tract size of at 
least 200 families of the relevant racial group. N=116 metropolitan areas for white families, 113 
metropolitan areas for non-Hispanic white families, 22 for black families, and 20 for Hispanic 
families. “Black Metro Sample” and “Hispanic Metro Sample” are estimates for white families in 
the samples of metros where black or Hispanic populations are sufficient for estimation (N=22 
and 20, respectively). 2007 refers to 2005-09 ACS and 2014 refers to 2012-16 ACS. ^p≤0.10; 
*p≤0.05; **p≤0.01; ***p≤0.001; statistical significance tests come from regression models with 
metropolitan area fixed effects and compare both 2007 and 2014 to 2000. 
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Table C3. Estimated Effects of Income Inequality on Rank-Order Income Segregation, 1970 to 2000 
(Replication of Reardon and Bischoff, 2011) 

  

Gini 0.561 *** 0.480 *** 0.528 ***
(0.085) (0.124) (0.142)

Year = 1980 0.027 *** 0.020 ** 0.024 ***
(0.007) (0.008) (0.009)

Year = 1990 0.025 * 0.031 *** 0.034 **
(0.012) (0.012) (0.013)

Year = 2000 0.012 0.019 0.021
(0.016) (0.016) (0.017)

Adjusted R2 0.959 0.925 0.924
N 400 400 400

Estimates Using                 

Bias-Corrected R R

Notes: Models include metropolitan area fixed effects, year indicators, and metropolitan-
year covariates (metro population, unemployment rate, proportion under age 18, 
proportion over age 65, proportion with high school diploma, proportion foreign born, 
proportion female headed families, per capita income, proportions employed in 
manufacturing, construction, financial and real estate, professional and managerial jobs, 
and proportions of housing built within ten, five, and one years). Bootstrapped standard 
errors in parentheses. Reported results published in Reardon & Bischoff 2011, Table 4, “All 

Families” model, predicting HR. Sample includes 100 largest metropolitan areas in 2000; 
data from 1970, 1980, 1990, and 2000. ^p≤0.10; *p≤0.05; **p≤0.01; ***p≤0.001.

Published Estimates 

(using published H R )

Estimates Using           

Bias-Corrected H R
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Table C4. Estimated Effects of Income Inequality on Rank-Order Income Segregation, 1970 to 2009 
(Replication of Bischoff and Reardon, 2014) 

 
  

Gini 0.443 *** 0.448 *** 0.500 ***
(0.090) (0.083) (0.098)

Average change, 1970s 0.000 0.001 0.002
(0.008) (0.007) (0.006)

Average change, 1980s 0.006 0.008 * 0.008
(0.005) (0.004) (0.004)

Average change, 1990s -0.018 *** -0.018 *** -0.018 ***
(0.004) (0.003) (0.014)

Average change, 2000s 0.006 0.000 -0.001
(0.005) (0.004) (0.004)

Adjusted R2 0.905 0.900 0.897
N 584 584 584

Estimates Using           
Bias-Corrected H R

Estimates Using                 
Bias-Corrected R R

Notes: Models include metropolitan area fixed effects and metropolitan-year covariates (log 
population, age composition, residents’ educational attainment, unemployment rate, proportion 
employed in manufacturing, per capita income, racial composition, foreign-born composition, and 
female-headed family rate). Reported results published in Bischoff and Reardon 2014, Table 5, 
predicting H R . Sample includes 117 metropolitan areas with population >500,000 in 2007 (minus Cape 
Coral in 1970); data from 1970, 1980, 1990, 2000, and 2007-11. ^p≤0.10; *p≤0.05; **p≤0.01; 
***p≤0.001.

Published Estimates 
(using published H R )
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Table C5. Longitudinal Regression Predicting Rank-Order Income Segregation Among Households With 
and Without Children, 1990 to 2010 (Replication of Owens 2016) 

 
  

Income Inequality 0.232 *** 0.194 ** 0.230 **
(0.069) (0.075) (0.081)

Income Inequality x Families with Children 0.223 *** 0.260 *** 0.275 ***
(0.057) (0.061) (0.066)

Fragmentation x Families with Children 0.028 ** 0.031 ** 0.034 **
(0.010) (0.011) (0.012)

District Fragmentation x 2000 -0.001 -0.003 -0.003
(0.009) (0.010) (0.011)

District Fragmentation x 2010 -0.012 -0.011 -0.012
(0.009) (0.010) (0.011)

0.014 0.016 0.019
(0.013) (0.014) (0.015)

0.023 ^ 0.020 0.023
(0.013) (0.014) (0.015)

Families with Children -0.153 *** -0.188 *** -0.193 ***
(0.029) (0.031) (0.034)

Year = 2000 -0.012 *** -0.018 *** -0.020 ***
(0.002) (0.002) (0.003)

Year = 2010 -0.012 ** -0.014 *** -0.018 ***
(0.004) (0.004) (0.004)

Families with Children x 2000 0.003 0.003 0.005
(0.003) (0.003) (0.003)

Families with Children x 2010 0.021 *** 0.023 *** 0.022 ***
(0.005) (0.005) (0.005)

N 570 570 570

Published Estimates 
(using published H R)

Estimates Using           
Bias-Corrected H R

Notes: Models include metropolitan area fixed effects and group-metro-year covariates and their interaction with group (log 
population, age composition, female-headed household rate, racial composition, racial segregation, foreign born 
composition, residents’ educational attainment, unemployment rate, proportion employed in manufacturing, and private 
school enrollment rate). Reported results published in Owens 2016, Table 4, Model 2, predicting H R . Sample includes 95 
largest metropolitan areas in 2010 with more than 1 school district; data from 1990, 2000, and 2008-2012. ^p≤0.10; 
*p≤0.05; **p≤0.01; ***p≤0.001.

Families with Children x Fragmentation x 2000

Families with Children x Fragmentation x 2010

Estimates Using                 
Bias-Corrected R R
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Figure C1. Mean Bias-Corrected Estimates of Income Segregation (Rank-Order R) among Families by Race, 
2000 to 2014  

 

Note: Data are from Appendix Table C2 (panels 1,3, 4, 5), which reports statistical significance of changes over time. 
Sample includes metropolitan areas among the 116 largest in 2007 where there are at least 10,000 families of the 
relevant racial/ethnic group from 1970-2000, and the average tract population is at least 200 of the relevant group 
(N=116 for white families; 113 for non-Hispanic white families; 22 for black families; 20 for Hispanic families).  
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